Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371.
School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798.
Adv Mater. 2018 Jan;30(2). doi: 10.1002/adma.201705017. Epub 2017 Nov 27.
High pressure (HP) can drive the direct sintering of nanoparticle assemblies for Ag/Au, CdSe/PbS nanocrystals (NCs). Instead of direct sintering for the conventional nanocrystals, this study experimentally observes for the first time high-pressure-induced comminution and recrystallization of organic-inorganic hybrid perovskite nanocrystals into highly luminescent nanoplates with a shorter carrier lifetime. Such novel pressure response is attributed to the unique structural nature of hybrid perovskites under high pressure: during the drastic cubic-orthorhombic structural transformation at ≈2 GPa, (301) the crystal plane fully occupied by organic molecules possesses a higher surface energy, triggering the comminution of nanocrystals into nanoslices along such crystal plane. Beyond bulk perovskites, in which pressure-induced modifications on crystal structures and functional properties will disappear after pressure release, the pressure-formed variants, i.e., large (≈100 nm) and thin (<10 nm) perovskite nanoplates, are retained and these exhibit simultaneous photoluminescence emission enhancing (a 15-fold enhancement in the photoluminescence) and carrier lifetime shortening (from ≈18.3 ± 0.8 to ≈7.6 ± 0.5 ns) after releasing of pressure from 11 GPa. This pressure-induced comminution of hybrid perovskite NCs and a subsequent amorphization-recrystallization treatment offer the possibilities of engineering the advanced hybrid perovskites with specific properties.
高压(HP)可驱动纳米颗粒组装体的直接烧结,用于 Ag/Au、CdSe/PbS 纳米晶体(NCs)。与传统纳米晶体的直接烧结不同,本研究首次实验观察到,在高压下,有机-无机杂化钙钛矿纳米晶体发生粉碎和再结晶,形成具有更短载流子寿命的高发光纳米板。这种新颖的压力响应归因于杂化钙钛矿在高压下的独特结构性质:在约 2 GPa 时发生剧烈的立方-正交结构转变时,(301)完全被有机分子占据的晶面具有更高的表面能,促使纳米晶体沿着该晶面粉碎成纳米薄片。在体相钙钛矿中,压力引起的晶体结构和功能性质的改变在压力释放后会消失,而压力形成的变体,即大(≈100nm)和薄(<10nm)的钙钛矿纳米板,会被保留下来,并且在压力从 11GPa 释放后,这些变体同时表现出光致发光发射增强(光致发光增强 15 倍)和载流子寿命缩短(从≈18.3±0.8 至≈7.6±0.5ns)。这种杂化钙钛矿 NCs 的压力粉碎和随后的非晶化-再结晶处理为具有特定性质的先进杂化钙钛矿的工程化提供了可能性。