Lü Xujie, Stoumpos Constantinos, Hu Qingyang, Ma Xuedan, Zhang Dongzhou, Guo Songhao, Hoffman Justin, Bu Kejun, Guo Xiaofeng, Wang Yingqi, Ji Cheng, Chen Haijie, Xu Hongwu, Jia Quanxi, Yang Wenge, Kanatzidis Mercouri G, Mao Ho-Kwang
Centerfor High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China.
Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
Natl Sci Rev. 2020 Nov 30;8(9):nwaa288. doi: 10.1093/nsr/nwaa288. eCollection 2021 Sep.
Metal halide perovskites possess unique atomic and electronic configurations that endow them with high defect tolerance and enable high-performance photovoltaics and optoelectronics. Perovskite light-emitting diodes have achieved an external quantum efficiency of over 20%. Despite tremendous progress, fundamental questions remain, such as how structural distortion affects the optical properties. Addressing their relationships is considerably challenging due to the scarcity of effective diagnostic tools during structural and property tuning as well as the limited tunability achievable by conventional methods. Here, using pressure and chemical methods to regulate the metal off-centering distortion, we demonstrate the giant tunability of photoluminescence (PL) in both the intensity (>20 times) and wavelength (>180 nm/GPa) in the highly distorted halide perovskites [CHNHGeI, HC(NH)GeI, and CsGeI]. Using advanced high-pressure probes and first-principles calculations, we quantitatively reveal a universal relationship whereby regulating the level of off-centering distortion towards 0.2 leads to the best PL performance in the halide perovskites. By applying this principle, intense PL can still be induced by substituting CHNH with Cs to control the distortion in (CHNH)CsGeI, where the chemical substitution plays a similar role as external pressure. The compression of a fully substituted sample of CsGeI further tunes the distortion to the optimal value at 0.7 GPa, which maximizes the emission with a 10-fold enhancement. This work not only demonstrates a quantitative relationship between structural distortion and PL property of the halide perovskites but also illustrates the use of knowledge gained from high-pressure research to achieve the desired properties by ambient methods.
金属卤化物钙钛矿具有独特的原子和电子构型,赋予它们高缺陷容忍度,并使其能够用于高性能光伏和光电器件。钙钛矿发光二极管的外量子效率已超过20%。尽管取得了巨大进展,但一些基本问题仍然存在,比如结构畸变如何影响光学性质。由于在结构和性能调控过程中缺乏有效的诊断工具,以及传统方法可实现的可调性有限,解决它们之间的关系极具挑战性。在此,我们使用压力和化学方法来调节金属的离位畸变,证明了在高度畸变的卤化物钙钛矿([CHNHGeI、HC(NH)GeI和CsGeI])中光致发光(PL)在强度(>20倍)和波长(>180 nm/GPa)方面具有巨大的可调性。通过使用先进的高压探针和第一性原理计算,我们定量揭示了一种普遍关系,即朝着0.2调节离位畸变水平会导致卤化物钙钛矿中最佳的PL性能。应用这一原理,通过用Cs取代CHNH来控制(CHNH)CsGeI中的畸变,仍然可以诱导出强烈的PL发射,其中化学取代起到了与外部压力类似的作用。对完全取代的CsGeI样品进行压缩,可进一步将畸变调节至0.7 GPa时的最佳值,使发射增强10倍并达到最大值。这项工作不仅证明了卤化物钙钛矿结构畸变与PL性能之间的定量关系,还展示了如何利用从高压研究中获得的知识,通过常压方法实现所需性能。