Department of Biology, Duke University, Durham, North Carolina 27708, USA.
Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA.
Annu Rev Genet. 2017 Nov 27;51:143-170. doi: 10.1146/annurev-genet-120116-023413.
Archaea are major contributors to biogeochemical cycles, possess unique metabolic capabilities, and resist extreme stress. To regulate the expression of genes encoding these unique programs, archaeal cells use gene regulatory networks (GRNs) composed of transcription factor proteins and their target genes. Recent developments in genetics, genomics, and computational methods used with archaeal model organisms have enabled the mapping and prediction of global GRN structures. Experimental tests of these predictions have revealed the dynamical function of GRNs in response to environmental variation. Here, we review recent progress made in this area, from investigating the mechanisms of transcriptional regulation of individual genes to small-scale subnetworks and genome-wide global networks. At each level, archaeal GRNs consist of a hybrid of bacterial, eukaryotic, and uniquely archaeal mechanisms. We discuss this theme from the perspective of the role of individual transcription factors in genome-wide regulation, how these proteins interact to compile GRN topological structures, and how these topologies lead to emergent, high-level GRN functions. We conclude by discussing how systems biology approaches are a fruitful avenue for addressing remaining challenges, such as discovering gene function and the evolution of GRNs.
古菌是生物地球化学循环的主要贡献者,具有独特的代谢能力,并能抵抗极端压力。为了调节编码这些独特程序的基因的表达,古菌细胞使用由转录因子蛋白及其靶基因组成的基因调控网络(GRN)。遗传、基因组学和与古菌模式生物一起使用的计算方法的最新进展使全球 GRN 结构的映射和预测成为可能。对这些预测的实验测试揭示了 GRN 对环境变化的动态功能。在这里,我们回顾了这一领域的最新进展,从研究单个基因的转录调控机制到小规模子网和全基因组全局网络。在每个层面上,古菌 GRN 由细菌、真核生物和独特的古菌机制的混合组成。我们从单个转录因子在全基因组调控中的作用、这些蛋白质如何相互作用来构建 GRN 的拓扑结构以及这些拓扑结构如何导致出现的高级别 GRN 功能的角度来讨论这个主题。最后,我们讨论了系统生物学方法如何为解决剩余的挑战提供一条富有成效的途径,例如发现基因功能和 GRN 的进化。