Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland.
Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.
Small. 2024 Nov;20(48):e2404309. doi: 10.1002/smll.202404309. Epub 2024 Sep 9.
Understanding the localization and the interactions of biomolecules at the nanoscale and in the cellular context remains challenging. Electron microscopy (EM), unlike light-based microscopy, gives access to the cellular ultrastructure yet results in grey-scale images and averts unambiguous (co-)localization of biomolecules. Multimodal nanoparticle-based protein labels for correlative cathodoluminescence electron microscopy (CCLEM) and energy-dispersive X-ray spectromicroscopy (EDX-SM) are presented. The single-particle STEM-cathodoluminescence (CL) and characteristic X-ray emissivity of sub-20 nm lanthanide-doped nanoparticles are exploited as unique spectral fingerprints for precise label localization and identification. To maximize the nanoparticle brightness, lanthanides are incorporated in a low-phonon host lattice and separated from the environment using a passivating shell. The core/shell nanoparticles are then functionalized with either folic (terbium-doped) or caffeic acid (europium-doped). Their potential for (protein-)labeling is successfully demonstrated using HeLa cells expressing different surface receptors that bind to folic or caffeic acid, respectively. Both particle populations show single-particle CL emission along with a distinctive energy-dispersive X-ray signal, with the latter enabling color-based localization of receptors within swift imaging times well below 2 min per while offering high resolution with a pixel size of 2.78 nm. Taken together, these results open a route to multi-color labeling based on electron spectromicroscopy.
理解生物分子在纳米尺度和细胞环境中的定位和相互作用仍然具有挑战性。电子显微镜(EM)与基于光的显微镜不同,它可以获得细胞超微结构的图像,但得到的是灰度图像,并且无法明确(共同)定位生物分子。本文提出了用于相关的阴极发光电子显微镜(CCLEM)和能量色散 X 射线光谱显微镜(EDX-SM)的基于多模态纳米颗粒的蛋白质标签。亚 20nm 的镧系掺杂纳米颗粒的单粒子 STEM-阴极发光(CL)和特征 X 射线发射率被利用作为独特的光谱指纹,用于精确的标记定位和识别。为了最大化纳米颗粒的亮度,将镧系元素掺入低声子晶格中,并使用钝化壳将其与环境隔离。然后,将核/壳纳米颗粒用叶酸(铽掺杂)或咖啡酸(铕掺杂)进行功能化。使用分别表达与叶酸或咖啡酸结合的不同表面受体的 HeLa 细胞,成功地证明了它们用于(蛋白质)标记的潜力。两种颗粒均显示出单粒子 CL 发射,同时具有独特的能量色散 X 射线信号,后者能够在低于 2 分钟的快速成像时间内基于颜色定位受体,同时提供具有 2.78nm 像素大小的高分辨率。总之,这些结果为基于电子光谱显微镜的多色标记开辟了一条途径。