Department of Cardiac Surgery, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany; Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany.
Institute of Molecular Immunology/ Experimental Oncology, Klinikum München rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany.
Biomaterials. 2018 Feb;155:176-190. doi: 10.1016/j.biomaterials.2017.11.012. Epub 2017 Nov 15.
Cell replacement in the heart is considered a promising strategy for the treatment of post-infarct heart failure. Direct intramyocardial injection of cells proved to be the most effective application route, however, engraftment rates are very low (<5%) strongly hampering its efficacy. Herein we combine magnetic nanoparticle (MNP) loading of EGFP labeled embryonic cardiomyocytes (eCM) and embryonic stem cell-derived cardiomyocytes (ES-CM) with application of custom designed magnets to enhance their short and long-term engraftment. To optimize cellular MNP uptake and magnetic force within the infarct area, first numerical simulations and experiments were performed in vitro. All tested cell types could be loaded efficiently with SOMag5-MNP (200 pg/cell) without toxic side effects. Application of a 1.3 T magnet at 5 mm distance from the heart for 10 min enhanced engraftment of both eCM and ES-CM by approximately 7 fold at 2 weeks and 3.4 fold (eCM) at 8 weeks after treatment respectively and also strongly improved left ventricular function at all time points. As underlying mechanisms we found that application of the magnetic field prevented the initial dramatic loss of cells via the injection channel. In addition, grafted eCM displayed higher proliferation and lower apoptosis rates. Electron microscopy revealed better differentiation of engrafted eCM, formation of cell to cell contacts and more physiological matrix formation in magnet-treated grafts. These results were corroborated by gene expression data. Thus, combination of MNP-loaded cells and magnet-application strongly increases long-term engraftment of cells addressing a major shortcoming of cardiomyoplasty.
心脏中的细胞替代被认为是治疗心肌梗死后心力衰竭的一种有前途的策略。直接向心肌内注射细胞被证明是最有效的应用途径,然而,植入率非常低(<5%),严重阻碍了其疗效。在此,我们将 EGFP 标记的胚胎心肌细胞(eCM)和胚胎干细胞衍生的心肌细胞(ES-CM)的磁性纳米颗粒(MNP)加载与定制设计的磁铁的应用相结合,以增强其短期和长期的植入效果。为了优化细胞内 MNP 的摄取和梗死区的磁力,首先在体外进行了数值模拟和实验。所有测试的细胞类型都可以高效地加载 SOMag5-MNP(200 pg/细胞),没有毒性副作用。在距离心脏 5 毫米的位置应用 1.3 T 的磁铁 10 分钟,可以使 eCM 和 ES-CM 的植入分别在 2 周和 8 周后增加约 7 倍和 3.4 倍,并在所有时间点都显著改善左心室功能。作为潜在机制,我们发现磁场的应用防止了细胞通过注射通道的最初剧烈损失。此外,移植的 eCM 显示出更高的增殖率和更低的凋亡率。电子显微镜显示,在磁处理的移植物中,移植的 eCM 更好地分化,形成细胞间的接触,并形成更具生理特性的基质。这些结果得到了基因表达数据的证实。因此,MNP 负载细胞与磁铁应用的结合,强烈增加了细胞的长期植入,解决了心肌成形术的一个主要缺点。
Am J Cardiovasc Drugs. 2025-6-27
Bioengineering (Basel). 2025-6-16
Tissue Eng Part B Rev. 2025-6
Int J Nanomedicine. 2024