Suppr超能文献

海绵相关南极细菌胞外聚合物的产生及生物工艺潜力。

Production and Biotechnological Potential of Extracellular Polymeric Substances from Sponge-Associated Antarctic Bacteria.

机构信息

Department of Chemical, Biological and Pharmaceutical Environmental Sciences (ChiBioFarAm), University of Messina, Messina, Italy.

Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Pozzuoli (NA), Italy.

出版信息

Appl Environ Microbiol. 2018 Jan 31;84(4). doi: 10.1128/AEM.01624-17. Print 2018 Feb 15.

Abstract

Four sponge-associated Antarctic bacteria (i.e., sp. strains CAL384 and CAL396, sp. strain GW185, and sp. strain CAL606) were selected for the highly mucous appearance of their colonies on agar plates. The production of extracellular polymeric substances (EPSs) was enhanced by a step-by-step approach, varying the carbon source, substrate and NaCl concentrations, temperature, and pH. The EPSs produced under optimal conditions were chemically characterized, resulting in a moderate carbohydrate content (range, 15 to 28%) and the presence of proteins (range, 3 to 24%) and uronic acids (range, 3.2 to 11.9%). Chemical hydrolysis of the carbohydrate portion revealed galactose, glucose, galactosamine, and mannose as the principal constituents. The potential biotechnological applications of the EPSs were also investigated. The high protein content in the EPSs from sp. CAL384 was probably responsible for the excellent emulsifying activity toward tested hydrocarbons, with a stable emulsification index (E) higher than those recorded for synthetic surfactants. All the EPSs tested in this work improved the freeze-thaw survival ratio of the isolates, suggesting that they may be exploited as cryoprotection agents. The addition of a sugar in the culture medium, by stimulating EPS production, also allowed isolates to grow in the presence of higher concentrations of mercury and cadmium. This finding was probably dependent on the presence of uronic acids and sulfate groups, which can act as ligands for cations, in the extracted EPSs. To date, biological matrices have never been employed for the investigation of EPS production by Antarctic psychrotolerant marine bacteria. The biotechnological potential of extracellular polymeric substances produced by Antarctic bacteria is very broad and comprises many advantages, due to their biodegradability, high selectivity, and specific action compared to synthetic molecules. Here, several interesting EPS properties have been highlighted, such as emulsifying activity, cryoprotection, biofilm formation, and heavy metal chelation, suggesting their potential applications in cosmetic, environmental, and food biotechnological fields as valid alternatives to the commercial polymers currently used.

摘要

四种海绵相关的南极细菌(即菌株 CAL384 和 CAL396、菌株 GW185 和菌株 CAL606)被选中,是因为它们在琼脂平板上的菌落具有高度黏液的外观。通过逐步改变碳源、基质和 NaCl 浓度、温度和 pH 值来增强胞外聚合物(EPS)的产生。在最佳条件下产生的 EPS 进行了化学特性分析,结果表明其碳水化合物含量适中(范围为 15 至 28%),并存在蛋白质(范围为 3 至 24%)和糖醛酸(范围为 3.2 至 11.9%)。碳水化合物部分的化学水解揭示了半乳糖、葡萄糖、半乳糖胺和甘露糖是主要成分。还研究了 EPS 的潜在生物技术应用。菌株 CAL384 的 EPS 中高蛋白质含量可能是其对测试烃类具有优异乳化活性的原因,其稳定的乳化指数(E)高于记录的合成表面活性剂。在这项工作中测试的所有 EPS 都提高了分离物的冻融存活率,表明它们可被用作冷冻保护剂。在培养基中添加糖,通过刺激 EPS 产生,也允许分离物在更高浓度的汞和镉存在下生长。这一发现可能取决于提取的 EPS 中存在的糖醛酸和硫酸盐基团,它们可以作为阳离子的配体。迄今为止,生物基质从未被用于研究南极耐冷海洋细菌的 EPS 产生。由于与合成分子相比,南极细菌产生的胞外聚合物具有生物降解性、高选择性和特异性作用,因此其生物技术潜力非常广泛,包括许多优点。这里强调了一些有趣的 EPS 特性,如乳化活性、冷冻保护、生物膜形成和重金属螯合,这表明它们在化妆品、环境和食品生物技术领域具有潜在的应用,是目前使用的商业聚合物的有效替代品。

相似文献

1
Production and Biotechnological Potential of Extracellular Polymeric Substances from Sponge-Associated Antarctic Bacteria.
Appl Environ Microbiol. 2018 Jan 31;84(4). doi: 10.1128/AEM.01624-17. Print 2018 Feb 15.
2
Extracellular polymeric substances with metal adsorption capacity produced by Pseudoalteromonas sp. MER144 from Antarctic seawater.
Environ Sci Pollut Res Int. 2018 Feb;25(5):4667-4677. doi: 10.1007/s11356-017-0851-z. Epub 2017 Dec 1.
3
Characterization of the exopolymer-producing Pseudoalteromonas sp. S8-8 from Antarctic sediment.
Appl Microbiol Biotechnol. 2022 Nov;106(21):7173-7185. doi: 10.1007/s00253-022-12180-x. Epub 2022 Sep 26.
4
Peculiarities of extracellular polymeric substances produced by Antarctic bacteria and their possible applications.
Appl Microbiol Biotechnol. 2020 Apr;104(7):2923-2934. doi: 10.1007/s00253-020-10448-8. Epub 2020 Feb 19.
6
Extracellular polymeric substances of bacteria and their potential environmental applications.
J Environ Manage. 2014 Nov 1;144:1-25. doi: 10.1016/j.jenvman.2014.05.010. Epub 2014 Jun 6.
7
Extracellular polymeric substances (EPS) producing and oil degrading bacteria isolated from the northern Gulf of Mexico.
PLoS One. 2018 Dec 6;13(12):e0208406. doi: 10.1371/journal.pone.0208406. eCollection 2018.
9
Biofilm dynamics and EPS production of a thermoacidophilic bioleaching archaeon.
N Biotechnol. 2019 Jul 25;51:21-30. doi: 10.1016/j.nbt.2019.02.002. Epub 2019 Feb 8.
10
Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress.
Environ Sci Pollut Res Int. 2010 Mar;17(3):595-602. doi: 10.1007/s11356-009-0233-2. Epub 2009 Sep 1.

引用本文的文献

1
Characterization of two GH10 enzymes with ability to hydrolyze pretreated Sorghum bicolor bagasse.
Appl Microbiol Biotechnol. 2025 Apr 28;109(1):104. doi: 10.1007/s00253-025-13484-4.
4
An astrobiological perspective on microbial biofilms: their importance for habitability and production of detectable and lasting biosignatures.
Appl Environ Microbiol. 2025 Mar 19;91(3):e0177824. doi: 10.1128/aem.01778-24. Epub 2025 Feb 10.
9
Functional Genomics of a Collection of Gammaproteobacteria Isolated from Antarctica.
Mar Drugs. 2024 May 23;22(6):238. doi: 10.3390/md22060238.

本文引用的文献

2
New emulsifying and cryoprotective exopolysaccharide from Antarctic Pseudomonas sp. ID1.
Carbohydr Polym. 2015 Mar 6;117:1028-1034. doi: 10.1016/j.carbpol.2014.08.060. Epub 2014 Sep 2.
3
Extracellular polymeric substances of bacteria and their potential environmental applications.
J Environ Manage. 2014 Nov 1;144:1-25. doi: 10.1016/j.jenvman.2014.05.010. Epub 2014 Jun 6.
4
Brevibacillus themoruber: a promising microbial cell factory for exopolysaccharide production.
J Appl Microbiol. 2014 Feb;116(2):314-24. doi: 10.1111/jam.12362. Epub 2013 Oct 30.
5
Bioactive volatile organic compounds from Antarctic (sponges) bacteria.
N Biotechnol. 2013 Sep 25;30(6):824-38. doi: 10.1016/j.nbt.2013.03.011. Epub 2013 Apr 22.
6
Bacteria associated with sabellids (Polychaeta: Annelida) as a novel source of surface active compounds.
Mar Pollut Bull. 2013 May 15;70(1-2):125-33. doi: 10.1016/j.marpolbul.2013.02.020. Epub 2013 Mar 15.
7
Structure and ecological roles of a novel exopolysaccharide from the arctic sea ice bacterium Pseudoalteromonas sp. Strain SM20310.
Appl Environ Microbiol. 2013 Jan;79(1):224-30. doi: 10.1128/AEM.01801-12. Epub 2012 Oct 19.
8
Marine bacterioplankton diversity and community composition in an antarctic coastal environment.
Microb Ecol. 2012 Jan;63(1):210-23. doi: 10.1007/s00248-011-9904-x. Epub 2011 Jul 12.
9
Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria.
Biotechnol Adv. 2012 Jan-Feb;30(1):272-93. doi: 10.1016/j.biotechadv.2011.06.011. Epub 2011 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验