Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, USA.
Biomech Model Mechanobiol. 2018 Jun;17(3):645-663. doi: 10.1007/s10237-017-0983-6. Epub 2017 Nov 27.
A hybrid, multiscale, particle-continuum numerical method is developed for resolving the interaction of a realistic thrombus geometry with unsteady hemodynamics typically occurring within large arteries. The method is based on a discrete particle/element description of the thrombus, coupled to blood flow using a fictitious domain finite element method. The efficacy of the discrete element approach in representing thrombi with arbitrary aggregate morphology and microstructure is demonstrated. The various features of the method are illustrated using a series of numerical experiments with a model system consisting of an occlusion embedded in a channel. The results from these numerical experiments establish that this approach can resolve the complex macroscale flow structures emanating from unsteady hemodynamics interacting with a thrombus. Simultaneously, it can also resolve micromechanical features, and microscale intra-thrombus flow and perfusion. Using a staggering algorithm, the method can further capture hemodynamics around time-varying thrombus manifolds. This is established using a numerical simulation of lysis of an idealized clot. The hybrid particle-continuum description of thrombus-hemodynamics interaction mechanics, and the unified treatment of macroscale as well as microscale flow and transport, renders significant advantages to the proposed method in enabling further investigations of physiological interest in thrombosis within patient-specific settings.
开发了一种混合、多尺度的颗粒-连续体数值方法,用于解决真实血栓几何形状与通常发生在大动脉内的非稳态血液动力学之间的相互作用。该方法基于血栓的离散颗粒/单元描述,并使用虚构域有限元方法将其与血流耦合。离散元方法在表示具有任意聚集形态和微观结构的血栓方面的有效性得到了证明。使用由嵌入通道中的阻塞物组成的模型系统进行了一系列数值实验,说明了该方法的各种特征。这些数值实验的结果表明,该方法可以解决由非稳态血液动力学与血栓相互作用产生的复杂宏观流动结构。同时,它还可以解决微机械特征以及微尺度内血栓内的流动和灌注。该方法可以通过交错算法进一步捕捉时变血栓流形周围的血液动力学。这是通过对理想化凝块溶解的数值模拟来建立的。血栓-血液动力学相互作用力学的混合颗粒-连续体描述,以及宏观和微观流动以及输运的统一处理,为该方法在特定于患者的环境中进一步研究血栓形成中的生理问题提供了显著优势。