Santos Gérsika B, Ribeiro Ana C G, Lima Samuel N P, Trostchansky Andrés, Cerdeira Cláudio Daniel, Brigagão Maísa R P L
Departamento de Bioquímica, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil.
Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
Chem Biol Interact. 2018 Jan 5;279:203-209. doi: 10.1016/j.cbi.2017.11.016. Epub 2017 Nov 26.
The identification of novel targets to control inflammation in humans is probably the primary challenge that impairs the development of new anti-inflammatory drugs. Therefore, the modulation of intracellular signaling pathways in phagocytes may be an interesting means of achieving this goal. However, this change to signaling can compromise the host's susceptibility to invading pathogens. We investigated whether the antioxidant nitroxide Tempol regulates the activity of kinases associated with the production of oxidants in neutrophils, which affects the fungicidal capability of these cells.
The effects of Tempol on PMA- or fMLP-activated neutrophils were examined by oxygen consumption as an index of the oxidative burst, a release of extracellular and total Reactive Oxygen Species (ROS) by chemiluminescence, kinase activities through analysis of ATP consumption during enzyme activities and the dot blot immunoassay and, finally, by neutrophil capacity of killing Candida albicans.
Tempol significantly inhibited the neutrophil oxidative burst in a concentration-dependent manner and decreased oxygen consumption (IC50 = 45 μM) and extracellular/total ROS formation with an increase on the lag period response. In addition, Tempol inhibited neutrophil kinase activities (i.e., a decrease in protein phosphorylation) elicited through different biochemical pathways and consequently impaired the fungicidal activity of these cells.
Although Tempol has potential anti-inflammatory activity that acts on different intracellular pathways (such as those involving kinases), researchers should be cautious, since this nitroxide down-regulated oxidants production and the fungicidal response of neutrophils.
确定控制人类炎症的新靶点可能是阻碍新型抗炎药物研发的主要挑战。因此,调节吞噬细胞内的信号通路可能是实现这一目标的有趣方法。然而,这种信号变化可能会损害宿主对入侵病原体的易感性。我们研究了抗氧化剂亚硝基四氮唑蓝(Tempol)是否调节与中性粒细胞中氧化剂产生相关的激酶活性,这会影响这些细胞的杀菌能力。
通过耗氧量作为氧化爆发的指标来检测Tempol对佛波酯(PMA)或N-甲酰甲硫氨酸-亮氨酸-苯丙氨酸(fMLP)激活的中性粒细胞的影响,通过化学发光检测细胞外和总活性氧(ROS)的释放,通过分析酶活性过程中的ATP消耗以及斑点印迹免疫测定来检测激酶活性,最后检测中性粒细胞杀灭白色念珠菌的能力。
Tempol以浓度依赖的方式显著抑制中性粒细胞的氧化爆发,降低耗氧量(IC50 = 45 μM)以及细胞外/总ROS的形成,并延长延迟期反应。此外,Tempol抑制通过不同生化途径引发的中性粒细胞激酶活性(即蛋白质磷酸化减少),从而损害这些细胞的杀菌活性。
尽管Tempol具有潜在的抗炎活性,可作用于不同的细胞内途径(如涉及激酶的途径),但研究人员应谨慎,因为这种亚硝基化合物会下调氧化剂的产生以及中性粒细胞的杀菌反应。