Suppr超能文献

中性粒细胞拯救活性氧:NADPH 氧化酶激活和细菌耐药的机制。

Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance.

机构信息

Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States.

Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States.

出版信息

Front Cell Infect Microbiol. 2017 Aug 25;7:373. doi: 10.3389/fcimb.2017.00373. eCollection 2017.

Abstract

Reactive oxygen species (ROS) generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs), toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs). Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation. Nonetheless, these pathogens often rely on repair and detoxifying proteins in addition to these secreted effectors and toxins in order to resist mammalian sources of ROS. This suggests that pathogens have both intrinsic and extrinsic mechanisms to avoid restriction by PMN-derived ROS. Here, we review mechanisms of oxidative burst in PMNs in response to bacterial infections, as well as the mechanisms by which bacterial pathogens thwart restriction by ROS to survive under conditions of oxidative stress.

摘要

活性氧(ROS)由 NADPH 氧化酶生成,在抗菌宿主防御和炎症中发挥重要作用。人类 NADPH 氧化酶缺乏会导致反复和严重的细菌感染,而其不受调节的释放会导致过度炎症引起的病理学。高浓度 ROS 的释放有助于清除入侵的细菌。ROS 释放到含有病原体的吞噬体中,从而限制组织损伤。宿主免疫细胞,如中性粒细胞(PMN),在表面受体激活后,会在感染部位释放大量 ROS。配体与 G 蛋白偶联受体(GPCR)、 Toll 样受体和细胞因子受体的结合,如果遇到其他信号,可以为 PMN 提供更强大的反应。同时,Fc 和整合素的激活直接诱导高水平的 ROS 产生。此外,与细菌肽类似物 fMLP(中性粒细胞趋化因子)结合的 GPCR 可以使细胞成熟,并引发低水平的 ROS 产生。这些受体的结合启动细胞内信号通路,导致下游效应蛋白的激活、NADPH 氧化酶复合物的组装,最终由该复合物产生 ROS。在 PMN 中,NADPH 氧化酶复合物释放的 ROS 可以激活颗粒蛋白酶并诱导中性粒细胞胞外陷阱(NETs)的形成。此外,ROS 可以穿过细菌病原体的膜并损伤其核酸、蛋白质和细胞膜。因此,为了建立感染,细菌病原体采用各种策略来防止 PMN 衍生的 ROS 或 ROS 产生的下游后果的限制。一些病原体能够使用分泌的效应蛋白或毒素直接阻止吞噬细胞的氧化爆发,这些效应蛋白或毒素干扰 NADPH 氧化酶复合物的易位或其激活所需的信号通路。尽管如此,这些病原体通常还依赖于修复和解毒蛋白,以及这些分泌的效应蛋白和毒素,以抵抗哺乳动物来源的 ROS。这表明病原体具有内在和外在机制来避免 PMN 衍生的 ROS 的限制。在这里,我们综述了 PMN 对细菌感染的氧化爆发机制,以及细菌病原体在氧化应激条件下逃避 ROS 限制以存活的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d68/5574878/531601f2f5df/fcimb-07-00373-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验