Synthesis and Solid State Pharmaceutical Centre (SSPC), Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Cork Road, Waterford, Ireland.
Synthesis and Solid State Pharmaceutical Centre (SSPC), Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Cork Road, Waterford, Ireland.
Int J Pharm. 2018 Jan 30;536(1):414-425. doi: 10.1016/j.ijpharm.2017.11.056. Epub 2017 Nov 26.
In this study, the dissolution behaviour of dipyridamole (DPM) and cinnarizine (CNZ) spray-dried amorphous solid dispersions (ASDs) using polyvinyl pyrrolidone (PVP) and polyacrylic acid (PAA) as a carrier matrix were evaluated and compared. The drug concentrations achieved from the dissolution of PVP and PAA solid dispersions were significantly greater than the equilibrium solubility of crystalline DPM and CNZ in phosphate buffer pH 6.8 (PBS 6.8). The maximum drug concentration achieved by dissolution of PVP and PAA solid dispersions did not exceed the theoretically calculated apparent solubility of amorphous DPM and CNZ. However, the degree of supersaturation of DPM and CNZ increased considerably as the polymer weight fraction within the solid dispersion increased. In addition, the supersaturation profile of DPM and CNZ were studied in the presence and absence of the polymers. PAA was found to maintain a higher level of supersaturation compared to PVP. The enhanced drug solution concentration following dissolution of ASDs can be attributed to the reduced crystal growth rates of DPM and CNZ at an equivalent supersaturation. We have also shown that, for drugs having high crystallization tendency and weak drug-polymer interaction, the feasible way to increase dissolution might be increase the polymer weight fraction in the ASD. Solution H NMR spectra were used to understand dissolution mechanism and to identify drug-polymer interaction. The change in electron densities of proton attached to different groups in DPM and CNZ suggested drug-polymer interaction in solution. The relative intensities of peak shift and nature of interaction between drug and polymer in different systems are different. These different effects suggest that DPM and CNZ interacts in a different way with PVP and PAA in solution which goes some way towards explaining the different polymeric effect, particularly in terms of inhibition of drug recrystallization and dissolution of DPM and CNZ ASDs. These results established that the different drug/polymer interactions in the solid state and in solution give rise to the variation in dissolution profile observed for different systems.
在这项研究中,使用聚乙烯吡咯烷酮 (PVP) 和聚丙烯酸 (PAA) 作为载体基质,评估并比较了双嘧达莫 (DPM) 和桂利嗪 (CNZ) 喷雾干燥无定形固体分散体 (ASD) 的溶解行为。从 PVP 和 PAA 固体分散体的溶解中获得的药物浓度明显大于磷酸盐缓冲液 pH 6.8(PBS 6.8)中结晶 DPM 和 CNZ 的平衡溶解度。通过溶解 PVP 和 PAA 固体分散体达到的最大药物浓度不超过无定形 DPM 和 CNZ 的理论计算表观溶解度。然而,随着固体分散体中聚合物重量分数的增加,DPM 和 CNZ 的过饱和度大大增加。此外,还研究了聚合物存在和不存在时 DPM 和 CNZ 的过饱和度曲线。与 PVP 相比,PAA 被发现能够维持更高水平的过饱和度。ASD 溶解后药物溶液浓度的提高可归因于在等效过饱和度下 DPM 和 CNZ 的晶体生长速率降低。我们还表明,对于具有高结晶倾向和弱药物-聚合物相互作用的药物,增加 ASD 中聚合物的重量分数可能是增加药物溶解的可行方法。使用溶液 H NMR 光谱来理解溶解机制并确定药物-聚合物相互作用。DPM 和 CNZ 中与不同基团相连的质子的电子密度变化表明了溶液中的药物-聚合物相互作用。不同体系中峰位移的相对强度和相互作用的性质不同。这些不同的影响表明,DPM 和 CNZ 以不同的方式与 PVP 和 PAA 在溶液中相互作用,这在一定程度上解释了不同的聚合物效应,特别是在抑制 DPM 和 CNZ 的药物再结晶和溶解方面。这些结果表明,固态和溶液中不同的药物/聚合物相互作用导致了不同体系观察到的溶解曲线的变化。