Cancer Institute, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.
Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA.
mBio. 2017 Nov 28;8(6):e01050-17. doi: 10.1128/mBio.01050-17.
Certain "protective" major histocompatibility complex class I (MHC-I) alleles, such as B57 and B27, are associated with long-term control of HIV-1 mediated by the CD8 cytotoxic-T-lymphocyte (CTL) response. However, the mechanism of such superior protection is not fully understood. Here we combined high-throughput fitness profiling of mutations in HIV-1 Gag, prediction of MHC-peptide binding affinity, and analysis of intraperson virus evolution to systematically compare differences with respect to CTL escape mutations between epitopes targeted by protective MHC-I alleles and those targeted by nonprotective MHC-I alleles. We observed that the effects of mutations on both viral replication and MHC-I binding affinity are among the determinants of CTL escape. Mutations in Gag epitopes presented by protective MHC-I alleles are associated with significantly higher fitness cost and lower reductions in binding affinity with respect to MHC-I. A linear regression model accounting for the effect of mutations on both viral replicative capacity and MHC-I binding can explain the protective efficacy of MHC-I alleles. Finally, we found a consistent pattern in the evolution of Gag epitopes in long-term nonprogressors versus progressors. Overall, our results suggest that certain protective MHC-I alleles allow superior control of HIV-1 by targeting epitopes where mutations typically incur high fitness costs and small reductions in MHC-I binding affinity. Understanding the mechanism of viral control achieved in long-term nonprogressors with protective HLA alleles provides insights for developing functional cure of HIV infection. Through the characterization of CTL escape mutations in infected persons, previous researchers hypothesized that protective alleles target epitopes where escape mutations significantly reduce viral replicative capacity. However, these studies were usually limited to a few mutations observed Here we utilized our recently developed high-throughput fitness profiling method to quantitatively measure the fitness of mutations across the entirety of HIV-1 Gag. The data enabled us to integrate the results with prediction of MHC-peptide binding affinity and analysis of intraperson virus evolution to systematically determine the differences in CTL escape mutations between epitopes targeted by protective HLA alleles and those targeted by nonprotective HLA alleles. We observed that the effects of Gag epitope mutations on HIV replicative fitness and MHC-I binding affinity are among the major determinants of CTL escape.
某些“保护性”主要组织相容性复合体 I 类 (MHC-I) 等位基因,如 B57 和 B27,与 CD8 细胞毒性 T 淋巴细胞 (CTL) 反应介导的 HIV-1 长期控制有关。然而,这种优越保护的机制尚不完全清楚。在这里,我们结合 HIV-1 Gag 中突变的高通量适应性分析、MHC-肽结合亲和力预测以及个体内病毒进化分析,系统比较了保护性 MHC-I 等位基因和非保护性 MHC-I 等位基因所靶向的表位的 CTL 逃逸突变之间的差异。我们观察到,突变对病毒复制和 MHC-I 结合亲和力的影响是 CTL 逃逸的决定因素之一。由保护性 MHC-I 等位基因呈递的 Gag 表位中的突变与显著更高的适应性成本和与 MHC-I 结合亲和力的降低有关。一个解释突变对病毒复制能力和 MHC-I 结合亲和力的影响的线性回归模型可以解释 MHC-I 等位基因的保护效果。最后,我们在长期非进展者和进展者中发现了 Gag 表位进化的一致模式。总体而言,我们的结果表明,某些保护性 MHC-I 等位基因通过靶向通常导致高适应性成本和 MHC-I 结合亲和力降低较小的突变表位,允许对 HIV-1 进行更好的控制。了解保护性 HLA 等位基因在长期非进展者中实现的病毒控制机制为开发 HIV 感染的功能性治愈提供了思路。通过对感染个体中 CTL 逃逸突变的特征描述,先前的研究人员假设保护性等位基因靶向逃逸突变显著降低病毒复制能力的表位。然而,这些研究通常仅限于观察到的少数突变。在这里,我们利用我们最近开发的高通量适应性分析方法,定量测量了 HIV-1 Gag 中所有突变的适应性。这些数据使我们能够将结果与 MHC-肽结合亲和力预测和个体内病毒进化分析相结合,系统地确定保护性 HLA 等位基因所靶向的表位与非保护性 HLA 等位基因所靶向的表位之间 CTL 逃逸突变的差异。我们观察到,Gag 表位突变对 HIV 复制适应性和 MHC-I 结合亲和力的影响是 CTL 逃逸的主要决定因素之一。