Suppr超能文献

基于多模态连通性的口才评分计算与可视化,用于计算机辅助神经外科手术路径规划。

Multimodal connectivity based eloquence score computation and visualisation for computer-aided neurosurgical path planning.

作者信息

Bakhshmand Saeed M, Eagleson Roy, de Ribaupierre Sandrine

机构信息

Biomedical Engineering Graduate Program, University of Western Ontario, London, ON, Canada.

Department of Electrical and Computer Engineering, University of Western Ontario, London, ON, Canada.

出版信息

Healthc Technol Lett. 2017 Sep 14;4(5):152-156. doi: 10.1049/htl.2017.0073. eCollection 2017 Oct.

Abstract

Non-invasive assessment of cognitive importance has been a major challenge for planning of neurosurgical procedures. In the past decade, in vivo brain imaging modalities have been considered for estimating the 'eloquence' of brain areas. In order to estimate the impact of damage caused by an access path towards a target region inside of the skull, multi-modal metrics are introduced in this paper. Accordingly, this estimated damage is obtained by combining multi-modal metrics. In other words, this damage is an aggregate of intervened grey matter volume and axonal fibre numbers, weighted by their importance within the assigned anatomical and functional networks. To validate these metrics, an exhaustive search algorithm is implemented for characterising the solution space and visually representing connectional cost associated with a path initiated from underlying points. In this presentation, brain networks are built from resting state functional magnetic resonance imaging (fMRI) and deterministic tractography. their results demonstrate that the proposed approach is capable of refining traditional heuristics, such as choosing the minimal distance from the lesion, by supplementing connectional importance of the resected tissue. This provides complementary information to help the surgeon in avoiding important functional hubs and their anatomical linkages; which are derived from neuroimaging modalities and incorporated to the related anatomical landmarks.

摘要

对认知重要性进行无创评估一直是神经外科手术规划中的一项重大挑战。在过去十年中,活体脑成像模式已被用于估计脑区的“功能明确性”。为了评估颅骨内通向目标区域的入路所造成损伤的影响,本文引入了多模态指标。相应地,通过组合多模态指标来获得这种估计损伤。换句话说,这种损伤是被干预的灰质体积和轴突纤维数量的总和,并根据它们在指定的解剖和功能网络中的重要性进行加权。为了验证这些指标,实施了一种穷举搜索算法,用于表征解空间并直观呈现与从基础点起始的路径相关的连接代价。在本报告中,脑网络由静息态功能磁共振成像(fMRI)和确定性纤维束成像构建而成。他们的结果表明,所提出的方法能够通过补充切除组织的连接重要性来完善传统启发式方法,比如选择离病变最近的距离。这提供了补充信息,以帮助外科医生避开重要的功能枢纽及其解剖连接;这些信息源自神经成像模式并整合到相关的解剖标志中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6054/5683204/be3ba2da432a/HTL.2017.0073.01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验