Department of Biochemistry and Molecular Genetics, Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
Cell Tissue Res. 2018 Jan;371(1):171-179. doi: 10.1007/s00441-017-2728-3. Epub 2017 Nov 29.
Neural stem and progenitor cells produce one of the most remarkable organs in nature, the human brain. Among neural stem cell progeny, post-mitotic neurons are likewise remarkably diverse. Single-cell transcriptomic approaches are now cataloging a long-sought-after molecular taxonomy of neuronal diversity in the brain. Contemporary single-cell omic classifications of neuronal diversity build from electrophysiological approaches that for decades have measured and cataloged diverse biophysical properties of single neurons. With the widespread application of human pluripotent stem cell-based models of neurogenesis to investigate disease pathology and to develop new drugs, a high-resolution understanding of neuronal diversity in vivo is essential to benchmark the state of in vitro models of human neurological disease.
神经干细胞和祖细胞产生了自然界中最非凡的器官之一,即人类大脑。在神经干细胞的后代中,有丝分裂后的神经元同样也具有显著的多样性。单细胞转录组学方法现在正在对大脑中神经元多样性的长期以来被寻求的分子分类进行编目。当代单细胞组学分类的神经元多样性是基于电生理方法构建的,这些方法数十年来一直在测量和编目单个神经元的各种生物物理特性。随着基于人多能干细胞的神经发生模型在疾病发病机制研究和新药开发中的广泛应用,对体内神经元多样性的高分辨率理解对于基准化人类神经疾病体外模型的状态至关重要。