Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Université de Strasbourg , 74 route du Rhin, 67401 Illkirch Cedex, France.
Institut Charles Sadron (CNRS-UdS) , 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France.
ACS Appl Mater Interfaces. 2017 Dec 13;9(49):43030-43042. doi: 10.1021/acsami.7b12292. Epub 2017 Nov 29.
Fluorescent nanoparticles (NPs) help to increase spatial and temporal resolution in bioimaging. Advanced microscopy techniques require very bright NPs that exhibit either stable emission for single-particle tracking or complete on/off switching (blinking) for super-resolution imaging. Here, ultrabright dye-loaded polymer NPs with controlled switching properties are developed. To this aim, the salt of a dye (rhodamine B octadecyl ester) with a hydrophobic counterion (fluorinated tetraphenylborate) is encapsulated at very high concentrations up to 30 wt % in NPs made of poly(lactic-co-glycolic acid) (PLGA), poly(methyl methacrylate) (PMMA), and polycaprolactone (PCL) through nanoprecipitation. The obtained 35 nm NPs are nearly 100 times brighter than quantum dots. The nature of the polymer is found to define the collective behavior of the encapsulated dyes so that NPs containing thousands of dyes exhibit either whole particle blinking, for PLGA, or stable emission, for PMMA and PCL. Fluorescence anisotropy measurements together with small-angle X-ray scattering experiments suggest that in less hydrophobic PLGA, dyes tend to cluster, whereas in more hydrophobic PMMA and PCL, dyes are dispersed within the matrix, thus altering the switching behavior of NPs. Experiments using a perylene diimide derivative show a similar effect of the polymer nature. The resulting fluorescent NPs are suitable for a wide range of imaging applications from tracking to super-resolution imaging. The findings on the organization of the load innside NPs will have impact on the development of materials for applications ranging from photovoltaics to drug delivery.
荧光纳米粒子(NPs)有助于提高生物成像的空间和时间分辨率。先进的显微镜技术需要非常明亮的 NPs,这些 NPs 要么具有单粒子跟踪的稳定发射,要么具有超分辨率成像的完全开启/关闭(闪烁)切换。在这里,开发了具有控制开关性能的超亮染料负载聚合物 NPs。为此,通过纳米沉淀将带有疏水性抗衡离子(氟化四苯硼酸盐)的染料(罗丹明 B 十八烷基酯)盐以高达 30wt%的浓度封装在由聚(乳酸-共-乙醇酸)(PLGA)、聚(甲基丙烯酸甲酯)(PMMA)和聚己内酯(PCL)制成的 NPs 中。所得的 35nm NPs 比量子点亮约 100 倍。发现聚合物的性质决定了封装染料的集体行为,因此包含数千个染料的 NPs 要么表现出整个粒子闪烁,对于 PLGA,要么表现出稳定的发射,对于 PMMA 和 PCL。荧光各向异性测量和小角 X 射线散射实验表明,在疏水性较低的 PLGA 中,染料倾向于聚集,而在疏水性较高的 PMMA 和 PCL 中,染料在基质内分散,从而改变 NPs 的开关行为。使用苝二酰亚胺衍生物的实验显示出聚合物性质的类似影响。所得荧光 NPs 适用于从跟踪到超分辨率成像的广泛成像应用。关于负载物在 NPs 内部的组织的发现将对从光伏到药物输送的各种应用的材料开发产生影响。