Li Jianjun, Zhang Rubo, Yang Yu
College of Computer Science and Technology, Harbin Engineering University, Harbin, China.
School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China.
PLoS One. 2017 Nov 29;12(11):e0188291. doi: 10.1371/journal.pone.0188291. eCollection 2017.
Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution.
多自主水下航行器(MAUV)分布式任务规划模型研究。提出了一种滚动时域量子人工蜂群(STDQABC)优化算法来求解多自主水下航行器的最优任务规划方案。在不确定的海洋环境中,采用滚动时域控制技术在缩小的时间范围内实现数值优化。滚动时域控制是较好的任务规划技术之一,它可以大大减少计算量,并实现自主水下航行器动力学、环境和成本之间的权衡。最后,进行了仿真实验以评估滚动时域量子蜂群优化算法的分布式任务规划性能。仿真结果表明,在迭代次数和运行时间方面,STDQABC算法比QABC算法和ABC算法收敛更快。STDQABC算法能够有效提高多自主水下航行器分布式任务规划性能,完成任务目标并获得近似最优解。