From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China.
From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
Mol Cell Proteomics. 2018 Feb;17(2):255-269. doi: 10.1074/mcp.RA117.000159. Epub 2017 Nov 29.
The eastern ( Acc) and western ( Aml) honeybee are two major honeybee species. Surprisingly, little is known about the fundamental molecular neurobiology of brain suborgans of Acc and Aml. We characterized and compared the proteomes of mushroom bodies (MBs), antennal lobes (ALs) and optical lobes (OLs) in the brain of both species, and biologically validated the functions related to learning and memory. Acc and Aml have evolved similar proteome signatures in MBs and OLs to drive the domain-specific neural activities. In MBs of both species, commonly enriched and enhanced functional groups related to protein metabolism and Ca transport relative to ALs and OLs, suggests that proteins and Ca are vital for consolidating learning and memory via modulation of synaptic structure and signal transduction. Furthermore, in OLs of both species, the mainly enriched ribonucleoside metabolism suggests its vital role as second messenger in promoting phototransduction. Notably, in ALs of both species, distinct proteome settings have shaped to prime olfactory learning and memory. In ALs of Acc, this is supported by the enriched cytoskeleton organization to sustain olfactory signaling through modulation of plasticity in glomeruli and intracellular transport. In ALs of Aml, however, the enriched functional groups implicated in hydrogen ion transport are indicative of their importance in supporting olfactory processes by regulation of synaptic transmission. The biological confirmation of enhanced activities of protein metabolism and signal transduction in ALs and MBs of Acc relative to in Aml demonstrates that a stronger sense of olfactory learning and memory has evolved in Acc. The reported first in-depth proteome data of honeybee brain suborgans provide a novel insight into the molecular basis of neurobiology, and is potentially useful for further neurological studies in honeybees and other insects.
东部(Acc)和西部(Aml)蜜蜂是两种主要的蜜蜂物种。令人惊讶的是,对于 Acc 和 Aml 的大脑亚器官的基本分子神经生物学知之甚少。我们对这两个物种的蘑菇体(MB)、触角叶(AL)和视叶(OL)的蛋白质组进行了表征和比较,并对与学习和记忆相关的功能进行了生物学验证。Acc 和 Aml 在 MB 和 OL 中进化出相似的蛋白质组特征,以驱动特定领域的神经活动。在这两个物种的 MB 中,与 AL 和 OL 相比,与蛋白质代谢和 Ca 转运相关的常见富集和增强的功能组表明,蛋白质和 Ca 对于通过调节突触结构和信号转导来巩固学习和记忆至关重要。此外,在这两个物种的 OL 中,主要富集的核糖核苷代谢表明其作为第二信使在促进光转导中的重要作用。值得注意的是,在这两个物种的 AL 中,不同的蛋白质组设置已经形成,以促进嗅觉学习和记忆。在 Acc 的 AL 中,这得到了富含细胞骨架组织的支持,通过调节神经突和细胞内运输的可塑性来维持嗅觉信号。然而,在 Aml 的 AL 中,富含与氢离子转运相关的功能组表明,它们通过调节突触传递在支持嗅觉过程中的重要性。Acc 中 AL 和 MB 中蛋白质代谢和信号转导活性增强的生物学证实表明,Acc 中进化出了更强的嗅觉学习和记忆能力。本研究首次报道了蜜蜂大脑亚器官的蛋白质组数据,为神经生物学的分子基础提供了新的见解,并可能对蜜蜂和其他昆虫的神经科学研究具有潜在的用途。