Suppr超能文献

光转导影响小鼠视网膜中的代谢通量和核苷酸代谢。

Phototransduction Influences Metabolic Flux and Nucleotide Metabolism in Mouse Retina.

作者信息

Du Jianhai, Rountree Austin, Cleghorn Whitney M, Contreras Laura, Lindsay Ken J, Sadilek Martin, Gu Haiwei, Djukovic Danijel, Raftery Dan, Satrústegui Jorgina, Kanow Mark, Chan Lawrence, Tsang Stephen H, Sweet Ian R, Hurley James B

机构信息

From the Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington 98109.

Diabetes and Obesity Center of Excellence.

出版信息

J Biol Chem. 2016 Feb 26;291(9):4698-710. doi: 10.1074/jbc.M115.698985. Epub 2015 Dec 16.

Abstract

Production of energy in a cell must keep pace with demand. Photoreceptors use ATP to maintain ion gradients in darkness, whereas in light they use it to support phototransduction. Matching production with consumption can be accomplished by coupling production directly to consumption. Alternatively, production can be set by a signal that anticipates demand. In this report we investigate the hypothesis that signaling through phototransduction controls production of energy in mouse retinas. We found that respiration in mouse retinas is not coupled tightly to ATP consumption. By analyzing metabolic flux in mouse retinas, we also found that phototransduction slows metabolic flux through glycolysis and through intermediates of the citric acid cycle. We also evaluated the relative contributions of regulation of the activities of α-ketoglutarate dehydrogenase and the aspartate-glutamate carrier 1. In addition, a comprehensive analysis of the retinal metabolome showed that phototransduction also influences steady-state concentrations of 5'-GMP, ribose-5-phosphate, ketone bodies, and purines.

摘要

细胞内的能量产生必须与需求保持同步。光感受器在黑暗中利用ATP维持离子梯度,而在光照下则利用ATP支持光转导。使产生与消耗相匹配可以通过将产生直接与消耗相耦合来实现。或者,产生可以由预测需求的信号来设定。在本报告中,我们研究了通过光转导进行信号传导控制小鼠视网膜能量产生的假说。我们发现小鼠视网膜中的呼吸作用与ATP消耗并未紧密耦合。通过分析小鼠视网膜中的代谢通量,我们还发现光转导减缓了通过糖酵解和柠檬酸循环中间体的代谢通量。我们还评估了α-酮戊二酸脱氢酶和天冬氨酸-谷氨酸载体1活性调节的相对贡献。此外,对视网膜代谢组的全面分析表明,光转导还影响5'-GMP、5-磷酸核糖、酮体和嘌呤的稳态浓度。

相似文献

1
Phototransduction Influences Metabolic Flux and Nucleotide Metabolism in Mouse Retina.
J Biol Chem. 2016 Feb 26;291(9):4698-710. doi: 10.1074/jbc.M115.698985. Epub 2015 Dec 16.
2
Autophagy-mediated catabolism of visual transduction proteins prevents retinal degeneration.
Autophagy. 2016 Dec;12(12):2439-2450. doi: 10.1080/15548627.2016.1238553. Epub 2016 Oct 18.
4
Separation of photoreceptor cell compartments in mouse retina for protein analysis.
Mol Neurodegener. 2017 Apr 11;12(1):28. doi: 10.1186/s13024-017-0171-2.
9
In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased light scattering of rod photoreceptors.
Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):E2937-E2946. doi: 10.1073/pnas.1620572114. Epub 2017 Mar 20.
10
Gene expression profiling of light-induced retinal degeneration in phototransduction gene knockout mice.
Exp Mol Med. 2008 Oct 31;40(5):495-504. doi: 10.3858/emm.2008.40.5.495.

引用本文的文献

1
"Energetics of the outer retina I: Estimates of nutrient exchange and ATP generation".
PLoS One. 2024 Dec 31;19(12):e0312260. doi: 10.1371/journal.pone.0312260. eCollection 2024.
2
Mitochondrial control of hypoxia-induced pathological retinal angiogenesis.
Angiogenesis. 2024 Nov;27(4):691-699. doi: 10.1007/s10456-024-09940-w. Epub 2024 Aug 3.
3
Markers of Hypoxia and Metabolism Correlate With Cell Differentiation in Retina and Lens Development.
Front Ophthalmol (Lausanne). 2022 Apr 22;2:867326. doi: 10.3389/fopht.2022.867326. eCollection 2022.
5
Cellular and Molecular Mechanisms of Neuronal Degeneration in Early-Stage Diabetic Retinopathy.
Curr Vasc Pharmacol. 2024;22(5):301-315. doi: 10.2174/0115701611272737240426050930.
7
A versatile pumpless multi-channel fluidics system for maintenance and real-time functional assessment of tissue and cells.
Cell Rep Methods. 2023 Nov 20;3(11):100642. doi: 10.1016/j.crmeth.2023.100642. Epub 2023 Nov 13.
8
Medium Depth Influences O2 Availability and Metabolism in Human RPE Cultures.
Invest Ophthalmol Vis Sci. 2023 Nov 1;64(14):4. doi: 10.1167/iovs.64.14.4.
9
Postnatal hyperglycemia alters amino acid profile in retinas (model of Phase I ROP).
iScience. 2023 Sep 22;26(10):108021. doi: 10.1016/j.isci.2023.108021. eCollection 2023 Oct 20.
10
Oxidative Stress and Its Regulation in Diabetic Retinopathy.
Antioxidants (Basel). 2023 Aug 21;12(8):1649. doi: 10.3390/antiox12081649.

本文引用的文献

1
Probing Metabolism in the Intact Retina Using Stable Isotope Tracers.
Methods Enzymol. 2015;561:149-70. doi: 10.1016/bs.mie.2015.04.002. Epub 2015 Jun 14.
2
Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells.
Cell. 2015 Jul 30;162(3):552-63. doi: 10.1016/j.cell.2015.07.017.
4
Molecular diversity and pleiotropic role of the mitochondrial calcium uniporter.
Cell Calcium. 2015 Jul;58(1):11-7. doi: 10.1016/j.ceca.2014.11.001. Epub 2014 Nov 13.
5
The ins and outs of mitochondrial calcium.
Circ Res. 2015 May 22;116(11):1810-9. doi: 10.1161/CIRCRESAHA.116.305484.
6
Role of AGC1/aralar in the metabolic synergies between neuron and glia.
Neurochem Int. 2015 Sep;88:38-46. doi: 10.1016/j.neuint.2015.04.001. Epub 2015 Apr 15.
7
Fatty acid carbon is essential for dNTP synthesis in endothelial cells.
Nature. 2015 Apr 9;520(7546):192-197. doi: 10.1038/nature14362. Epub 2015 Apr 1.
8
The regulation of neuronal mitochondrial metabolism by calcium.
J Physiol. 2015 Aug 15;593(16):3447-62. doi: 10.1113/JP270254.
9
Glucose, lactate, and shuttling of metabolites in vertebrate retinas.
J Neurosci Res. 2015 Jul;93(7):1079-92. doi: 10.1002/jnr.23583. Epub 2015 Mar 20.
10
N6-methyladenosine marks primary microRNAs for processing.
Nature. 2015 Mar 26;519(7544):482-5. doi: 10.1038/nature14281. Epub 2015 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验