Wagner Jonathan M, Christensen Devin E, Bhattacharya Akash, Dawidziak Daria M, Roganowicz Marcin D, Wan Yueping, Pumroy Ruth A, Demeler Borries, Ivanov Dmitri N, Ganser-Pornillos Barbie K, Sundquist Wesley I, Pornillos Owen
Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA.
J Virol. 2018 Jan 30;92(4). doi: 10.1128/JVI.01563-17. Print 2018 Feb 15.
Restriction factors are intrinsic cellular defense proteins that have evolved to block microbial infections. Retroviruses such as HIV-1 are restricted by TRIM5 proteins, which recognize the viral capsid shell that surrounds, organizes, and protects the viral genome. TRIM5α uses a SPRY domain to bind capsids with low intrinsic affinity ( of >1 mM) and therefore requires higher-order assembly into a hexagonal lattice to generate sufficient avidity for productive capsid recognition. TRIMCyp, on the other hand, binds HIV-1 capsids through a cyclophilin A domain, which has a well-defined binding site and higher affinity ( of ∼10 μM) for isolated capsid subunits. Therefore, it has been argued that TRIMCyp proteins have dispensed with the need for higher-order assembly to function as antiviral factors. Here, we show that, consistent with its high degree of sequence similarity with TRIM5α, the TRIMCyp B-box 2 domain shares the same ability to self-associate and facilitate assembly of a TRIMCyp hexagonal lattice that can wrap about the HIV-1 capsid. We also show that under stringent experimental conditions, TRIMCyp-mediated restriction of HIV-1 is indeed dependent on higher-order assembly. Both forms of TRIM5 therefore use the same mechanism of avidity-driven capsid pattern recognition. Rhesus macaques and owl monkeys are highly resistant to HIV-1 infection due to the activity of TRIM5 restriction factors. The rhesus macaque TRIM5α protein blocks HIV-1 through a mechanism that requires self-assembly of a hexagonal TRIM5α lattice around the invading viral core. Lattice assembly amplifies very weak interactions between the TRIM5α SPRY domain and the HIV-1 capsid. Assembly also promotes dimerization of the TRIM5α RING E3 ligase domain, resulting in synthesis of polyubiquitin chains that mediate downstream steps of restriction. In contrast to rhesus TRIM5α, the owl monkey TRIM5 homolog, TRIMCyp, binds isolated HIV-1 CA subunits much more tightly through its cyclophilin A domain and therefore was thought to act independently of higher-order assembly. Here, we show that TRIMCyp shares the assembly properties of TRIM5α and that both forms of TRIM5 use the same mechanism of hexagonal lattice formation to promote viral recognition and restriction.
限制因子是细胞内固有的防御蛋白,其进化目的是阻止微生物感染。诸如HIV-1之类的逆转录病毒受到TRIM5蛋白的限制,TRIM5蛋白可识别围绕、组织并保护病毒基因组的病毒衣壳。TRIM5α利用一个SPRY结构域以低亲和力(大于1 mM)结合衣壳,因此需要组装成六方晶格以产生足够的亲和力来有效识别衣壳。另一方面,TRIMCyp通过亲环素A结构域结合HIV-1衣壳,该结构域具有明确的结合位点,对分离的衣壳亚基具有更高的亲和力(约10 μM)。因此,有人认为TRIMCyp蛋白无需进行高阶组装即可作为抗病毒因子发挥作用。在此,我们表明,与其与TRIM5α的高度序列相似性一致,TRIMCyp的B-box 2结构域具有相同的自我缔合能力,并能促进TRIMCyp六方晶格的组装,该晶格可包裹HIV-1衣壳。我们还表明,在严格的实验条件下,TRIMCyp介导的HIV-1限制确实依赖于高阶组装。因此,两种形式的TRIM5都使用相同的亲和力驱动衣壳模式识别机制。恒河猴和夜猴由于TRIM5限制因子的活性而对HIV-1感染具有高度抗性。恒河猴TRIM5α蛋白通过一种机制来阻断HIV-1,该机制需要围绕入侵病毒核心自组装形成六方TRIM5α晶格。晶格组装增强了TRIM5α SPRY结构域与HIV-1衣壳之间非常微弱的相互作用。组装还促进了TRIM5α RING E3连接酶结构域的二聚化,导致合成介导限制下游步骤的多聚泛素链。与恒河猴TRIM5α不同,夜猴TRIM5同源物TRIMCyp通过其亲环素A结构域更紧密地结合分离的HIV-1 CA亚基,因此被认为其作用独立于高阶组装。在此,我们表明TRIMCyp具有TRIM5α的组装特性,并且两种形式的TRIM5都使用相同的六方晶格形成机制来促进病毒识别和限制。