Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907.
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2R3.
Plant Physiol. 2018 Jan;176(1):432-449. doi: 10.1104/pp.17.01554. Epub 2017 Nov 30.
The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here, we used Arabidopsis () reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor long-lived microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls.
叶片表皮是影响器官大小和形状的机械外壳。它的形态发生是一个多尺度的过程,其中纳米尺度的细胞骨架蛋白复合物、单个细胞和细胞群塑造生长并定义宏观叶片特征。相邻细胞的交错生长是一种进化上保守的发育策略。了解信号通路和细胞骨架蛋白如何在这种组织形态发生过程中塑造细胞壁,是一个重要的研究挑战。目前认为,具有叶裂细胞形态的细胞和分子控制涉及 PIN 型质膜外排载体(PIN-FORMED,PIN),它产生亚细胞生长素梯度。生长素梯度被提出在细胞边界之间起作用,以编码相邻细胞之间皮质微管和肌动蛋白丝的稳定偏移模式。许多模型表明,沿垂周细胞壁的长寿命微管产生局部细胞壁异质性,限制局部生长并指定叶裂片形成的时间和位置。在这里,我们使用拟南芥(Arabidopsis)反向遗传学和多元长期延时成像来测试当前的细胞形状控制模型。我们发现,PIN 蛋白和沿垂周壁的长寿命微管都不能预测裂片形成的模式。在叶裂片细胞的区域中,垂周微管与细胞形状不相关,并且在细胞扩展的时间尺度上不稳定。我们的分析表明,垂周微管在 pavement 细胞中有多种功能,并且叶裂片的起始可能由细胞几何形状、细胞壁应力模式和跨越垂周壁和周壁的瞬态微管网络之间的复杂相互作用控制。