State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070, China.
Department of Materials Science and Engineering, University of Washington , Seattle 98195, United States.
ACS Appl Mater Interfaces. 2017 Dec 20;9(50):43665-43673. doi: 10.1021/acsami.7b13658. Epub 2017 Dec 11.
Vanadium oxides are promising anode materials for lithium-ion batteries (LIBs) due to their high capacity, good safety, and low cost. However, their practical application has been deferred by the poor rate capability and cycling stability. In this work, we report the designed synthesis of porous VO/VO@carbon heterostructure electrode for high-performance LIBs. The synergic effects of porous nanostructures, phase hybridization with self-building electric field at heterointerface, and conductive carbon implantation effectively enhance the electronic/ionic conduction and buffer the volume variation in the composite material. Electrochemical tests reveal that the composite electrode exhibits high Li-ion storage capacities of 503 and 453 mAh/g at 100 and 500 mA/g, as well as good cycling stability with a retained capacity of 569 mAh/g over 105 cycles at 100 mA/g. In-depth kinetics analysis discloses that pseudocapacitive Li-ion storage process dominates in the composite electrode, which is probably enabled by efficient coupling of the heterostructure components. The strategy of in situ carbon implantation and phase hybridization presented herein may be extended to other electrode materials for rechargeable batteries with superior electrochemical properties.
氧化钒由于其高容量、良好的安全性和低成本,是一种很有前途的锂离子电池(LIB)的阳极材料。然而,由于其较差的倍率性能和循环稳定性,其实际应用受到了阻碍。在这项工作中,我们报告了一种用于高性能 LIB 的多孔 VO/VO@碳异质结构电极的设计合成。多孔纳米结构、异质界面自构建电场的相杂交以及导电碳注入的协同效应,有效地提高了复合材料的电子/离子导电性,并缓冲了其体积变化。电化学测试表明,该复合电极在 100 mA/g 时具有 503 和 453 mAh/g 的高锂离子存储容量,在 100 mA/g 时经过 105 次循环后,仍具有 569 mAh/g 的良好循环稳定性。深入的动力学分析表明,赝电容型锂离子存储过程在复合电极中占主导地位,这可能是由于异质结构组分的有效耦合所致。本文提出的原位碳注入和相杂交策略可能会扩展到其他具有优异电化学性能的可充电电池的电极材料中。