Schulze Greiving Verena C, de Boer Hans L, Bomer Johan G, van den Berg Albert, Le Gac Séverine
BIOS, Lab on a chip Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
Electrophoresis. 2018 Feb;39(3):496-503. doi: 10.1002/elps.201700346. Epub 2017 Dec 21.
Combining high-resolution imaging and electrophysiological recordings is key for various types of experimentation on lipid bilayers and ion channels. Here, we propose an integrated biosensing platform consisting of a microfluidic cartridge and a dedicated chip-holder to conduct such dual measurements on suspended lipid bilayers, in a user-friendly manner. To illustrate the potential of the integrated platform, we characterize lipid bilayers in terms of thickness and fluidity while simultaneously monitoring single ion channel currents. For that purpose, POPC lipid bilayers are supplemented with a fluorescently-tagged phospholipid (NBD-PE, 1% mol) for Fluorescence Recovery After Photobleaching (FRAP) measurements and a model ion channel (gramicidin, 1 nM). These combined measurements reveal that NBD-PE has no effect on the lipid bilayer thickness while gramicidin induces thinning of the membrane. Furthermore, the presence of gramicidin does not alter the lipid bilayer fluidity. Surprisingly, in lipid bilayers supplemented with both probes, a reduction in gramicidin open probability and lifetime is observed compared to lipid bilayers with gramicidin only, suggesting an influence of NBD-PE on the gramicidin ion function. Altogether, our proposed microfluidic biosensing platform in combination with the herein presented multi-parametric measurement scheme paves the way to explore the interdependent relationship between lipid bilayer properties and ion channel function.
将高分辨率成像与电生理记录相结合,对于脂质双层和离子通道的各类实验而言至关重要。在此,我们提出一种集成生物传感平台,该平台由一个微流控芯片盒和一个专用芯片支架组成,以便以用户友好的方式对悬浮脂质双层进行此类双重测量。为了说明该集成平台的潜力,我们在监测单离子通道电流的同时,从厚度和流动性方面对脂质双层进行了表征。为此,在POPC脂质双层中添加了一种荧光标记的磷脂(NBD-PE,1%摩尔)用于光漂白后荧光恢复(FRAP)测量,以及一种模型离子通道(短杆菌肽,1 nM)。这些联合测量结果表明,NBD-PE对脂质双层厚度没有影响,而短杆菌肽会导致膜变薄。此外,短杆菌肽的存在不会改变脂质双层的流动性。令人惊讶的是,与仅含有短杆菌肽的脂质双层相比,在同时添加两种探针的脂质双层中,观察到短杆菌肽的开放概率和寿命降低,这表明NBD-PE对短杆菌肽的离子功能有影响。总之,我们提出的微流控生物传感平台与本文提出的多参数测量方案相结合,为探索脂质双层性质与离子通道功能之间的相互依存关系铺平了道路。