Suppr超能文献

用于微流控尺度非侵入式原位表征的片上光子检测技术

On-Chip Photonic Detection Techniques for Non-Invasive In Situ Characterizations at the Microfluidic Scale.

作者信息

Kurdadze Tamar, Lamadie Fabrice, Nehme Karen A, Teychené Sébastien, Biscans Béatrice, Rodriguez-Ruiz Isaac

机构信息

CEA, DES, ISEC, DMRC, Univ Montpellier, 30207 Bagnols-sur-Ceze, Marcoule, France.

Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France.

出版信息

Sensors (Basel). 2024 Feb 27;24(5):1529. doi: 10.3390/s24051529.

Abstract

Microfluidics has emerged as a robust technology for diverse applications, ranging from bio-medical diagnostics to chemical analysis. Among the different characterization techniques that can be used to analyze samples at the microfluidic scale, the coupling of photonic detection techniques and on-chip configurations is particularly advantageous due to its non-invasive nature, which permits sensitive, real-time, high throughput, and rapid analyses, taking advantage of the microfluidic special environments and reduced sample volumes. Putting a special emphasis on integrated detection schemes, this review article explores the most relevant advances in the on-chip implementation of UV-vis, near-infrared, terahertz, and X-ray-based techniques for different characterizations, ranging from punctual spectroscopic or scattering-based measurements to different types of mapping/imaging. The principles of the techniques and their interest are discussed through their application to different systems.

摘要

微流控技术已成为一种强大的技术,可用于从生物医学诊断到化学分析等各种应用。在可用于微流控尺度样品分析的不同表征技术中,光子检测技术与芯片配置的结合具有特别的优势,因为它具有非侵入性,利用微流控的特殊环境和减少的样品体积,能够进行灵敏、实时、高通量和快速分析。本文特别强调集成检测方案,探讨了基于紫外可见、近红外、太赫兹和X射线技术在芯片上实现不同表征的最相关进展,范围从逐点光谱或基于散射的测量到不同类型的映射/成像。通过将这些技术应用于不同系统,讨论了它们的原理及其意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8792/10933925/0b150d416fe9/sensors-24-01529-g005.jpg

相似文献

2
Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches.
Biosensors (Basel). 2023 May 27;13(6):584. doi: 10.3390/bios13060584.
3
Microfluidics-to-mass spectrometry: a review of coupling methods and applications.
J Chromatogr A. 2015 Feb 20;1382:98-116. doi: 10.1016/j.chroma.2014.10.039. Epub 2014 Oct 23.
4
Photonic crystal biosensors towards on-chip integration.
J Biophotonics. 2012 Aug;5(8-9):601-16. doi: 10.1002/jbio.201200039. Epub 2012 Jun 8.
5
6
High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
Acta Biomater. 2016 Apr 1;34:1-20. doi: 10.1016/j.actbio.2015.09.009. Epub 2015 Sep 8.
7
Online Monitoring of Solutions Within Microfluidic Chips: Simultaneous Raman and UV-Vis Absorption Spectroscopies.
ACS Sens. 2019 Sep 27;4(9):2288-2295. doi: 10.1021/acssensors.9b00736. Epub 2019 Sep 6.
8
Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: a review.
Anal Bioanal Chem. 2022 Apr;414(9):2883-2902. doi: 10.1007/s00216-021-03872-w. Epub 2022 Jan 21.
9
Sensor integration into microfluidic systems: trends and challenges.
Curr Opin Biotechnol. 2023 Oct;83:102978. doi: 10.1016/j.copbio.2023.102978. Epub 2023 Aug 1.
10
Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review.
Biosens Bioelectron. 2019 Feb 1;126:697-706. doi: 10.1016/j.bios.2018.11.032. Epub 2018 Nov 20.

引用本文的文献

1
Biophotonic (nano)structures: from fundamentals to emerging applications.
RSC Adv. 2025 Jul 22;15(32):26138-26172. doi: 10.1039/d5ra03288a. eCollection 2025 Jul 21.
2
Integrated Photonic Biosensors: Enabling Next-Generation Lab-on-a-Chip Platforms.
Nanomaterials (Basel). 2025 May 13;15(10):731. doi: 10.3390/nano15100731.

本文引用的文献

1
Application of microfluidic technology based on surface-enhanced Raman scattering in cancer biomarker detection: A review.
J Pharm Anal. 2023 Dec;13(12):1429-1451. doi: 10.1016/j.jpha.2023.08.009. Epub 2023 Aug 23.
3
Microfluidics Coupled Mass Spectrometry for Single Cell Multi-Omics.
Small Methods. 2024 Jan;8(1):e2301179. doi: 10.1002/smtd.202301179. Epub 2023 Oct 15.
5
Structured-light-sheet imaging in an integrated optofluidic platform.
Lab Chip. 2023 Dec 20;24(1):34-46. doi: 10.1039/d3lc00639e.
6
Rapid droplet-based mixing for single-molecule spectroscopy.
Nat Methods. 2023 Oct;20(10):1479-1482. doi: 10.1038/s41592-023-01995-9. Epub 2023 Sep 25.
7
Computer vision meets microfluidics: a label-free method for high-throughput cell analysis.
Microsyst Nanoeng. 2023 Sep 21;9:116. doi: 10.1038/s41378-023-00562-8. eCollection 2023.
10
Unlocking the potential of microfluidics in mass spectrometry-based immunopeptidomics for tumor antigen discovery.
Cell Rep Methods. 2023 Jun 26;3(6):100511. doi: 10.1016/j.crmeth.2023.100511.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验