Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany.
Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
Environ Microbiol. 2018 Jan;20(1):369-384. doi: 10.1111/1462-2920.14010. Epub 2017 Dec 15.
Microbial activity is key in understanding the contribution of microbial communities to ecosystem functions. Metabolic labelling with heavy water (D O) leads to the formation of carbon-deuterium bonds in active microorganisms. We illustrated how D O labelling allows monitoring of metabolic activity combined with a functional characterization of active populations in complex microbial communities. First, we demonstrated by single cell Raman microspectroscopy that all measured bacterial cells from groundwater isolates growing in complex medium with D O were labelled. Next, we conducted a labelling approach with the total groundwater microbiome in D O amended microcosms. Deuterium was incorporated in most measured cells, indicating metabolic activity in the oligotrophic groundwater. Moreover, we spiked the groundwater microbiome with organic model compounds. We discovered that heterotrophs assimilating veratric acid, a lignin derivative, showed higher labelling than heterotrophs assimilating methylamine, a degradation product of biomass. This difference can be explained by dilution of the deuterium through hydrogen from the organic compounds. Metaproteomics identified Sphingomonadaceae and Microbacteriaceae as key players in veratric acid degradation, and the metabolic pathways employed. Methylamine, in contrast, stimulated various proteobacterial genera. We propose this combined approach of Raman microspectroscopy and metaproteomics for elucidating the complex metabolic response of microbial populations to different stimuli.
微生物活性是理解微生物群落对生态系统功能贡献的关键。利用重水(DO)进行代谢标记会导致活性微生物中形成碳-氘键。我们说明了 DO 标记如何允许监测代谢活性,同时对复杂微生物群落中的活性种群进行功能表征。首先,我们通过单细胞拉曼微光谱技术证明,在含有 DO 的复杂培养基中生长的所有测量的地下水分离菌的细菌细胞都被标记。接下来,我们在添加 DO 的微宇宙中对总地下水微生物组进行了标记方法。氘被掺入大多数测量的细胞中,表明贫营养地下水中存在代谢活性。此外,我们在地下水微生物组中添加了有机模型化合物。我们发现,同化藜芦酸(木质素衍生物)的异养菌的标记比同化甲胺(生物质降解产物)的异养菌高。这种差异可以通过有机化合物中的氢来解释氘的稀释。代谢组学鉴定出鞘氨醇单胞菌科和微杆菌科是藜芦酸降解的关键参与者,并确定了所采用的代谢途径。相比之下,甲胺刺激了各种变形菌属。我们提出了这种拉曼微光谱和代谢组学相结合的方法,用于阐明微生物种群对不同刺激的复杂代谢反应。