Galili Nir, Bernasconi Stefano M, Nissan Alon, Alcolombri Uria, Aquila Giorgia, Di Bella Marcella, Blattmann Thomas M, Haghipour Negar, Italiano Francesco, Jaggi Madalina, Kaplan-Ashiri Ifat, Lee Kang Soo, Lechte Maxwell A, Magnabosco Cara, Porter Susannah M, Rudmin Maxim, Spencer Robert G M, Stocker Roman, Wang Zhe, Wohlwend Stephan, Hemingway Jordon D
Geological Institute, Department of Earth and Planetary Sciences, ETH Zurich, Zurich, Switzerland.
Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel.
Nature. 2025 Aug 13. doi: 10.1038/s41586-025-09383-3.
Dissolved organic carbon (DOC) is the largest reduced carbon reservoir in modern oceans. Its dynamics regulate marine communities and atmospheric CO levels, whereas C compositions track ecosystem structure and autotrophic metabolism. However, the geologic history of marine DOC remains largely unconstrained, limiting our ability to mechanistically reconstruct coupled ecological and biogeochemical evolution. Here we develop and validate a direct proxy for past DOC signatures using co-precipitated organic carbon in iron ooids. We apply this to 26 marine iron ooid-containing formations deposited over the past 1,650 million years to generate a data-based reconstruction of marine DOC signals since the Palaeoproterozoic. Our predicted DOC concentrations were near modern levels in the Palaeoproterozoic, then decreased by 90-99% in the Neoproterozoic before sharply rising in the Cambrian. We interpret these dynamics to reflect three distinct states. The occurrence of mostly small, single-celled organisms combined with severely hypoxic deep oceans, followed by larger, more complex organisms and little change in ocean oxygenation and finally continued organism growth and a transition to fully oxygenated oceans. Furthermore, modern DOC is C-enriched relative to the Proterozoic, possibly because of changing autotrophic carbon-isotope fractionation driven by biological innovation. Our findings reflect connections between the carbon cycle, ocean oxygenation and the evolution of complex life.
溶解有机碳(DOC)是现代海洋中最大的还原碳库。其动态变化调节着海洋群落和大气中的二氧化碳水平,而碳的组成则反映了生态系统结构和自养代谢。然而,海洋DOC的地质历史在很大程度上仍未得到明确,这限制了我们从机制上重建生态与生物地球化学耦合演化的能力。在此,我们利用铁鲕粒中共沉淀的有机碳开发并验证了一种用于过去DOC特征的直接替代指标。我们将其应用于过去16.5亿年间沉积的26个含海洋铁鲕粒的地层,以生成自古元古代以来基于数据的海洋DOC信号重建。我们预测的DOC浓度在古元古代接近现代水平,然后在新元古代下降了90% - 99%,在寒武纪急剧上升。我们将这些动态变化解释为反映了三种不同的状态。先是大多为小型单细胞生物的出现,同时伴有深海严重缺氧,接着是体型更大、更复杂的生物出现,且海洋氧化程度变化不大,最后是生物持续生长并向完全氧化的海洋过渡。此外,相对于元古代,现代DOC富含碳,这可能是由于生物创新驱动的自养碳同位素分馏变化所致。我们的研究结果反映了碳循环、海洋氧化与复杂生命演化之间的联系。