Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, Jena 07743, Germany.
Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, Jena 07743, Germany; The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
Water Res. 2023 Oct 1;244:120426. doi: 10.1016/j.watres.2023.120426. Epub 2023 Jul 28.
High rates of CO fixation and the genetic potential of various groundwater microbes for autotrophic activity have shown that primary production is an important source of organic C in groundwater ecosystems. However, the contribution of specific chemolithoautotrophic groups such as S-oxidizing bacteria (SOB) to groundwater primary production and their adaptation strategies remain largely unknown. Here, we stimulated anoxic groundwater microcosms with reduced S and sampled the microbial community after 1, 3 and 6 weeks. Genome-resolved metaproteomics was combined with 50at-% CO stable isotope probing to follow the C flux through the microbial food web and infer traits expressed by active SOB in the groundwater microcosms. Already after 7 days, 90% of the total microbial biomass C in the microcosms was replaced by CO-derived C, increasing to 97% at the end of incubation. Stable Isotope Cluster Analysis revealed active autotrophs, characterized by a uniform C-incorporation of 45% in their peptides, to dominate the microbial community throughout incubation. Mixo- and heterotrophs, characterized by 10 to 40% C-incorporation, utilized the primarily produced organic C. Interestingly, obligate autotrophs affiliated with Sulfuricella and Sulfuritalea contained traits enabling the storage of elemental S in globules to maintain primary production under energy limitation. Others related to Sulfurimonas seemed to rapidly utilize substrates for fast proliferation, and most autotrophs further maximized their energy yield via efficient denitrification and the potential for H oxidation. Mixotrophic SOB, belonging to Curvibacter or Polaromonas, enhanced metabolic flexibility by using organic compounds to satisfy their C requirements. Time series data spanning eight years further revealed that key taxa of our microcosms composed up to 15% of the microbial groundwater community, demonstrating their in-situ importance. This showed that SOB, by using different metabolic strategies, are able to account for high rates of primary production in groundwater, especially at sites limited to geogenic nutrient sources. The widespread presence of SOB with traits such as S storage, H oxidation, and organic C utilization in many aquatic habitats further suggested that metabolic versatility governs S-fueled primary production in the environment.
高比例的 CO 固定和各种地下水微生物的固碳潜力表明,初级生产是地下水生态系统中有机碳的重要来源。然而,特定的化能自养群,如 S 氧化菌(SOB)对地下水初级生产的贡献及其适应策略在很大程度上仍不清楚。在这里,我们用还原态 S 刺激缺氧地下水微宇宙,并在 1、3 和 6 周后采样微生物群落。结合基因组分辨率的宏蛋白质组学和 50at-% CO 稳定同位素示踪,我们可以跟踪微生物食物网中的 C 通量,并推断出在地下水微宇宙中活跃的 SOB 表达的特征。在 7 天内,微宇宙中 90%的微生物生物量 C 被 CO 衍生的 C 取代,在培养结束时增加到 97%。稳定同位素聚类分析显示,活跃的自养生物主导了整个培养过程,其特征是肽中的 C 掺入率均匀为 45%。混合营养和异养生物的 C 掺入率为 10%至 40%,利用主要产生的有机 C。有趣的是,与 Sulfuricella 和 Sulfuritalea 有关的专性自养生物含有能够将元素 S 储存在球体中的特征,以在能量限制下维持初级生产。与 Sulfurimonas 有关的其他生物似乎能够快速利用基质进行快速增殖,大多数自养生物通过有效的反硝化和 H 氧化进一步最大限度地提高其能量产量。属于 Curvibacter 或 Polaromonas 的混合营养 SOB 通过使用有机化合物来满足其 C 需求,提高了代谢灵活性。跨越八年的时间序列数据进一步表明,我们微宇宙中的关键分类群组成了微生物地下水群落的 15%,这表明它们在原位的重要性。这表明 SOB 通过使用不同的代谢策略,能够在地下水环境中实现高比例的初级生产,特别是在以地质营养源为限制的地点。在许多水生栖息地中广泛存在具有 S 储存、H 氧化和有机 C 利用等特征的 SOB 进一步表明,代谢多样性控制着环境中 S 驱动的初级生产。