Suppr超能文献

3,6-二氯水杨酸的代谢是由 Rhizorhabdus dicambivorans Ndbn-20 中的 DsmABC 细胞色素 P450 单加氧酶系统启动的。

3,6-Dichlorosalicylate Catabolism Is Initiated by the DsmABC Cytochrome P450 Monooxygenase System in Rhizorhabdus dicambivorans Ndbn-20.

机构信息

Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.

School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, China.

出版信息

Appl Environ Microbiol. 2018 Jan 31;84(4). doi: 10.1128/AEM.02133-17. Print 2018 Feb 15.

Abstract

The degradation of the herbicide dicamba is initiated by demethylation to form 3,6-dichlorosalicylate (3,6-DCSA) in Ndbn-20. In the present study, a 3,6-DCSA degradation-deficient mutant, Ndbn-20m, was screened. A cluster, , was lost in this mutant. The cluster consisted of nine genes, all of which were apparently induced by 3,6-DCSA. DsmA shared 30 to 36% identity with the monooxygenase components of reported three-component cytochrome P450 systems and formed a monophyletic branch in the phylogenetic tree. DsmB and DsmC were most closely related to the reported [2Fe-2S] ferredoxin and ferredoxin reductase, respectively. The disruption of in strain Ndbn-20 resulted in inactive 3,6-DCSA degradation. When , but not alone, was introduced into mutant Ndbn-20m and DC-2 (which is unable to degrade salicylate and its derivatives), they acquired the ability to hydroxylate 3,6-DCSA. Single-crystal X-ray diffraction demonstrated that the DsmABC-catalyzed hydroxylation occurred at the C-5 position of 3,6-DCSA, generating 3,6-dichlorogentisate (3,6-DCGA). In addition, DsmD shared 51% identity with GtdA (a gentisate and 3,6-DCGA 1,2-dioxygenase) from sp. strain RW5. However, unlike GtdA, the purified DsmD catalyzed the cleavage of gentisate and 3-chlorogentisate but not 6-chlorogentisate or 3,6-DCGA Based on the bioinformatic analysis and gene function studies, a possible catabolic pathway of dicamba in Ndbn-20 was proposed. Dicamba is widely used to control a variety of broadleaf weeds and is a promising target herbicide for the engineering of herbicide-resistant crops. The catabolism of dicamba has thus received increasing attention. Bacteria mineralize dicamba initially via demethylation, generating 3,6-dichlorosalicylate. However, the catabolism of 3,6-dichlorosalicylate remains unknown. In this study, we cloned a gene cluster, , involved in 3,6-dichlorosalicylate degradation from Ndbn-20, demonstrated that the cytochrome P450 monooxygenase system DsmABC was responsible for the 5-hydroxylation of 3,6-dichlorosalicylate, and proposed a dicamba catabolic pathway. This study provides a basis to elucidate the catabolism of dicamba and has benefits for the ecotoxicological study of dicamba. Furthermore, the hydroxylation of salicylate has been previously reported to be catalyzed by single-component flavoprotein or three-component Rieske non-heme iron oxygenase, whereas DsmABC was the only cytochrome P450 monooxygenase system hydroxylating salicylate and its methyl- or chloro-substituted derivatives.

摘要

草甘膦的降解是由 Ndbn-20 中的去甲基化形成 3,6-二氯邻苯二甲酸(3,6-DCSA)引发的。在本研究中,筛选出了一个 3,6-DCSA 降解缺陷突变体 Ndbn-20m。这个突变体失去了一个簇 ,由九个显然受 3,6-DCSA 诱导的基因组成。DsmA 与报道的三种细胞色素 P450 系统的单加氧酶成分具有 30%至 36%的同一性,并在系统发育树中形成一个单系分支。DsmB 和 DsmC 与报道的[2Fe-2S]铁氧还蛋白和铁氧还蛋白还原酶最接近。在 Ndbn-20 菌株中缺失 导致 3,6-DCSA 降解失活。当 ,而不是 单独引入突变体 Ndbn-20m 和 DC-2(不能降解水杨酸及其衍生物)时,它们获得了羟基化 3,6-DCSA 的能力。单晶 X 射线衍射表明,DsmABC 催化的羟化发生在 3,6-DCSA 的 C-5 位置,生成 3,6-二氯龙胆酸(3,6-DCGA)。此外,DsmD 与来自 sp. 菌株 RW5 的 GtdA(一种龙胆酸盐和 3,6-DCGA 1,2-双加氧酶)具有 51%的同一性。然而,与 GtdA 不同的是,纯化的 DsmD 催化龙胆酸盐和 3-氯龙胆酸盐的裂解,但不催化 6-氯龙胆酸盐或 3,6-DCGA 。基于生物信息学分析和基因功能研究,提出了 Ndbn-20 中草甘膦的可能代谢途径。草甘膦被广泛用于控制各种阔叶杂草,是工程抗草甘膦作物的有前途的目标除草剂。草甘膦的代谢因此受到越来越多的关注。细菌最初通过去甲基化将草甘膦矿化为 3,6-二氯邻苯二甲酸。然而,3,6-二氯邻苯二甲酸的代谢仍不清楚。在这项研究中,我们从 Ndbn-20 中克隆了一个参与 3,6-二氯邻苯二甲酸降解的基因簇 ,证明细胞色素 P450 单加氧酶系统 DsmABC 负责 3,6-二氯邻苯二甲酸的 5-羟化,并提出了草甘膦的代谢途径。该研究为阐明草甘膦的代谢提供了依据,有利于草甘膦的生态毒理学研究。此外,水杨酸的羟化以前曾被报道由单组分黄素蛋白或三组分 Rieske 非血红素铁加氧酶催化,而 DsmABC 是唯一催化水杨酸及其甲基或氯取代衍生物羟化的细胞色素 P450 单加氧酶系统。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验