Suppr超能文献

进化认识论:用新数据回顾并复兴分布式生物智能的研究计划。

Evolutionary epistemology: Reviewing and reviving with new data the research programme for distributed biological intelligence.

作者信息

Slijepcevic Predrag

机构信息

Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom.

出版信息

Biosystems. 2018 Jan;163:23-35. doi: 10.1016/j.biosystems.2017.11.008. Epub 2017 Dec 2.

Abstract

Numerous studies in microbiology, eukaryotic cell biology, plant biology, biomimetics, synthetic biology, and philosophy of science appear to support the principles of the epistemological theory inspired by evolution, also known as "Evolutionary Epistemology", or EE. However, that none of the studies acknowledged EE suggests that its principles have not been formulated with sufficient clarity and depth to resonate with the interests of the empirical research community. In this paper I review evidence in favor of EE, and also reformulate EE principles to better inform future research. The revamped programme may be tentatively called Research Programme for Distributed Biological Intelligence. Intelligence I define as the capacity of organisms to gain information about their environment, process that information internally, and translate it into phenotypic forms. This multistage progression may be expressed through the acronym IGPT (information-gain-process-translate). The key principles of the programme may be summarized as follows. (i) Intelligence, a universal biological phenomenon promoting individual fitness, is required for effective organism-environment interactions. Given that animals represent less than 0.01% of the planetary biomass, neural intelligence is not the evolutionary norm. (ii) The basic unit of intelligence is a single cell prokaryote. All other forms of intelligence are derived. (iii) Intelligence is hierarchical. It ranges from bacteria to the biosphere or Gaia. (iv) The concept of "information" acquires a new meaning because information processing is at the heart of biological intelligence. All biological systems, from bacteria to Gaia, are intelligent, open thermodynamic systems that exchange information, matter and energy with the environment. (v) The organism-environment interaction is cybernetic. As much as the organism changes due to the influence of the environment, the organism's responses to induced changes affect the environment and subsequent organism-environment interactions. Based on the above principles a new research agenda can be formulated to explore different forms of biological intelligence.

摘要

微生物学、真核细胞生物学、植物生物学、仿生学、合成生物学以及科学哲学领域的众多研究似乎都支持受进化启发的认识论理论的原则,该理论也被称为“进化认识论”(EE)。然而,这些研究均未提及EE,这表明其原则尚未以足够清晰和深入的方式阐述,难以引起实证研究界的兴趣。在本文中,我回顾了支持EE的证据,并重新阐述了EE原则,以便为未来的研究提供更好的指导。这个经过改进的计划可暂称为分布式生物智能研究计划。我将智能定义为生物体获取有关其环境的信息、在内部处理该信息并将其转化为表型形式的能力。这个多阶段过程可以用首字母缩写IGPT(信息获取 - 处理 - 转化)来表示。该计划的关键原则可总结如下:(i)智能是一种促进个体适应性的普遍生物现象,是生物体与环境有效相互作用所必需的。鉴于动物占地球生物量不到0.01%,神经智能并非进化常态。(ii)智能的基本单位是单细胞原核生物。所有其他形式的智能都是衍生而来的。(iii)智能是分层的。它涵盖从细菌到生物圈或盖亚的范围。(iv)“信息”的概念有了新的含义,因为信息处理是生物智能的核心。所有生物系统,从细菌到盖亚,都是智能的、开放的热力学系统,与环境交换信息、物质和能量。(v)生物体与环境的相互作用是控制论的。生物体因环境影响而发生多大变化,其对诱导变化的反应就会对环境产生多大影响,并进而影响后续的生物体与环境的相互作用。基于上述原则,可以制定一个新的研究议程来探索不同形式的生物智能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验