Department of Biological Sciences, Faculty of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Bio-Next Project, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Yamate Build. #3, 5-1, Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
Semin Cell Dev Biol. 2018 Jul;79:48-57. doi: 10.1016/j.semcdb.2017.11.035. Epub 2017 Dec 7.
Leaf shape varies markedly. Here I focus on the diversity in leaf contour, which can be considered marginal variation in curvature if we omit detailed marginal structures such as serrations. This curvature can be described by a combination of sigmoids: a curve for the apical half and a curve for the basal half connected with or without an interval. Marginal curvature is determined by the position of the leaf meristem, the acceleration and deceleration of cell proliferation in the leaf meristem, and the angle of directed cell proliferation. Several key factors contributing to this variation have been revealed to date, but the majority of the underlying genetic mechanisms are unclear. Here I provide an overview of current knowledge and propose future directions for the field.
叶片形状差异显著。在这里,我主要关注叶片轮廓的多样性,如果我们忽略锯齿等详细的边缘结构,那么这种多样性可以被认为是曲率上的微小变化。这种曲率可以通过组合 sigmoid 来描述:一个用于描述叶尖的曲线和一个用于描述叶基的曲线,这两个曲线可以连接也可以不连接,中间有或没有间隔。边缘曲率由叶片分生组织的位置、叶片分生组织中细胞增殖的加速和减速以及定向细胞增殖的角度决定。迄今为止,已经揭示了几个导致这种变化的关键因素,但大多数潜在的遗传机制尚不清楚。在这里,我提供了对当前知识的概述,并为该领域提出了未来的发展方向。