Suppr超能文献

番茄叶形的多样性为育种提供了新的见解。

Diversity of tomato leaf form provides novel insights into breeding.

作者信息

Nakayama Hokuto, Ichihashi Yasunori, Kimura Seisuke

机构信息

Graduate School of Science, Department of Biological Sciences, The University of Tokyo, Science Build. #2, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan.

Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, CA 95616, U.S.A.

出版信息

Breed Sci. 2023 Mar;73(1):76-85. doi: 10.1270/jsbbs.22061. Epub 2023 Jan 20.

Abstract

Tomato ( L.) is cultivated widely globally. The crop exhibits tremendous morphological variations because of its long breeding history. Apart from the commercial tomato varieties, wild species and heirlooms are grown in certain regions of the world. Since the fruit constitutes the edible part, much of the agronomical research is focused on it. However, recent studies have indicated that leaf morphology influences fruit quality. As leaves are specialized photosynthetic organs and the vascular systems transport the photosynthetic products to sink organs, the architectural characteristics of the leaves have a strong influence on the final fruit quality. Therefore, comprehensive research focusing on both the fruit and leaf morphology is required for further tomato breeding. This review summarizes an overview of knowledge of the basic tomato leaf development, morphological diversification, and molecular mechanisms behind them and emphasizes its importance in breeding. Finally, we discuss how these findings and knowledge can be applied to future tomato breeding.

摘要

番茄(L.)在全球广泛种植。由于其悠久的育种历史,该作物表现出巨大的形态变异。除了商业番茄品种外,野生种和传统品种在世界某些地区也有种植。由于果实是可食用部分,许多农艺学研究都集中在果实上。然而,最近的研究表明,叶片形态会影响果实品质。由于叶片是专门的光合器官,而维管系统将光合产物运输到库器官,叶片的结构特征对最终果实品质有很大影响。因此,进一步的番茄育种需要同时关注果实和叶片形态的综合研究。本综述总结了番茄叶片基本发育、形态多样性及其背后分子机制的知识概况,并强调了其在育种中的重要性。最后,我们讨论了这些发现和知识如何应用于未来的番茄育种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18f8/10165341/cf5022841299/73_076-g001.jpg

相似文献

1
Diversity of tomato leaf form provides novel insights into breeding.
Breed Sci. 2023 Mar;73(1):76-85. doi: 10.1270/jsbbs.22061. Epub 2023 Jan 20.
2
Leaf shape is a predictor of fruit quality and cultivar performance in tomato.
New Phytol. 2020 May;226(3):851-865. doi: 10.1111/nph.16403. Epub 2020 Feb 11.
4
QTL mapping of fruit mineral contents provides new chances for molecular breeding of tomato nutritional traits.
Theor Appl Genet. 2017 May;130(5):903-913. doi: 10.1007/s00122-017-2859-7. Epub 2017 Mar 9.
5
Genomic variation in tomato, from wild ancestors to contemporary breeding accessions.
BMC Genomics. 2015 Apr 1;16(1):257. doi: 10.1186/s12864-015-1444-1.
7
Tomato (Solanum lycopersicum): A Model Fruit-Bearing Crop.
CSH Protoc. 2008 Nov 1;2008:pdb.emo105. doi: 10.1101/pdb.emo105.
9
Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex.
J Exp Bot. 2005 Jan;56(410):297-307. doi: 10.1093/jxb/eri057. Epub 2004 Dec 13.
10
Rewiring of the Fruit Metabolome in Tomato Breeding.
Cell. 2018 Jan 11;172(1-2):249-261.e12. doi: 10.1016/j.cell.2017.12.019.

引用本文的文献

1
BED-YOLO: An Enhanced YOLOv10n-Based Tomato Leaf Disease Detection Algorithm.
Sensors (Basel). 2025 May 2;25(9):2882. doi: 10.3390/s25092882.
2
The Gene Enhances the Cold Resistance of .
Plants (Basel). 2025 Jan 10;14(2):180. doi: 10.3390/plants14020180.
4
Tapping into the plasticity of plant architecture for increased stress resilience.
F1000Res. 2023 Oct 2;12:1257. doi: 10.12688/f1000research.140649.1. eCollection 2023.
6
Dissected Leaf 1 encodes an MYB transcription factor that controls leaf morphology in potato.
Theor Appl Genet. 2023 Aug 9;136(9):183. doi: 10.1007/s00122-023-04430-x.
7
Understanding plant development for plant breeding.
Breed Sci. 2023 Mar;73(1):1-2. doi: 10.1270/jsbbs.73.1.

本文引用的文献

1
Biofortified tomatoes provide a new route to vitamin D sufficiency.
Nat Plants. 2022 Jun;8(6):611-616. doi: 10.1038/s41477-022-01154-6. Epub 2022 May 23.
2
Genome-wide characterization of the TALE homeodomain family and the KNOX-BLH interaction network in tomato.
Plant Mol Biol. 2022 Aug;109(6):799-821. doi: 10.1007/s11103-022-01277-6. Epub 2022 May 11.
3
Molecular mechanisms underlying leaf development, morphological diversification, and beyond.
Plant Cell. 2022 Jul 4;34(7):2534-2548. doi: 10.1093/plcell/koac118.
4
Looking beyond the gene network - metabolic and mechanical cell drivers of leaf morphogenesis.
J Cell Sci. 2022 Apr 15;135(8). doi: 10.1242/jcs.259611. Epub 2022 Apr 19.
5
Dynamic evolution of small signalling peptide compensation in plant stem cell control.
Nat Plants. 2022 Apr;8(4):346-355. doi: 10.1038/s41477-022-01118-w. Epub 2022 Mar 28.
6
GABA-enriched tomato is first CRISPR-edited food to enter market.
Nat Biotechnol. 2022 Jan;40(1):9-11. doi: 10.1038/d41587-021-00026-2.
7
Leaf form diversification in an ornamental heirloom tomato results from alterations in two different HOMEOBOX genes.
Curr Biol. 2021 Nov 8;31(21):4788-4799.e5. doi: 10.1016/j.cub.2021.08.023. Epub 2021 Sep 1.
9
The leaf meristem enigma: The relationship between the plate meristem and the marginal meristem.
Plant Cell. 2021 Oct 11;33(10):3194-3206. doi: 10.1093/plcell/koab190.
10
Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance.
Proc Natl Acad Sci U S A. 2021 Jul 6;118(27). doi: 10.1073/pnas.2026152118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验