Suppr超能文献

同步荧光光谱融合应用于阿甘油掺假分析的可行性评估

Feasibility Assessment of Synchronous Fluorescence Spectral Fusion by Application to Argan Oil for Adulteration Analysis.

作者信息

Stokes Tyler D, Foteini Mellou, Brownfield Brett, Kalivas John H, Mousdis George, Amine Aziz, Georgiou Constantinos

机构信息

1 Department of Chemistry, Idaho State University, Pocatello, ID, USA.

2 Chemistry laboratory, Agricultural University of Athens, Athens, Greece.

出版信息

Appl Spectrosc. 2018 Mar;72(3):432-441. doi: 10.1177/0003702817749232. Epub 2017 Dec 4.

Abstract

Synchronous fluorescence spectroscopy (SFS) is used for quantitative analysis as well as for qualitative analysis, such as with classification methods. With SFS, determination of a useful wavelength interval between the excitation and emission wavelengths (Δλ) is required. There are a multitude of Δλ intervals that can be evaluated and optimization of the best one is complex. Presented here is a fusion approach for combining Δλ intervals, thereby negating the need to perform the selection by a skilled operator. To demonstrate the feasibility of omitting selection of the best Δλ interval, adulterated argan oil samples are studied. Argan oil is made from the argan tree, endemic to southwestern Morocco, and is well-known for its cosmetic, pharmaceutical, and nutritional applications. It is considered a luxury product and exported from Morocco around the world. Consequently, detection of argan oil adulteration followed by quantitative analysis of the adulterant concentration is important. This study uses fusion of SFS spectra obtained at ten Δλ intervals to first detect adulteration of argan oil by corn oil and then determination of the corn oil content. For detection of adulteration, 15 one-class classification methods were used simultaneously over the ten Δλ sets of SFS spectra. For tuning parameter dependent classifiers such as Mahalanobis distance, non-optimized classifiers are used. Raw classification values are used, removing the need to set classifier-dependent threshold values, albeit, ultimately, a fusion decision rule is needed for classification. For quantitative analysis, two calibration approaches are evaluated with fusion of these ten Δλ SFS spectral data sets. One is multivariate calibration by partial least squares (PLS). The second approach is a univariate calibration process where the SFS spectra are summed over respective SFS spectral ranges, also known as the area under the curve (AUC). For adulteration detection and quantitation of the corn oil, prediction errors decrease with fusion compared to individually using the ten Δλ interval SFS specific data sets. For this argan oil data set, the AUC method generally provides equivalent prediction errors to PLS.

摘要

同步荧光光谱法(SFS)用于定量分析以及定性分析,例如采用分类方法时。使用SFS时,需要确定激发波长和发射波长之间的有用波长间隔(Δλ)。有许多Δλ间隔可供评估,而最佳间隔的优化很复杂。本文提出了一种融合方法,用于组合Δλ间隔,从而无需熟练操作人员进行选择。为了证明省略最佳Δλ间隔选择的可行性,对掺假的阿甘油样品进行了研究。阿甘油由摩洛哥西南部特有的阿甘树制成,以其在化妆品、制药和营养方面的应用而闻名。它被视为奢侈品,从摩洛哥出口到世界各地。因此,检测阿甘油掺假并随后对掺假物浓度进行定量分析很重要。本研究使用在十个Δλ间隔下获得的SFS光谱融合,首先检测玉米油对阿甘油的掺假,然后测定玉米油含量。为了检测掺假,在十个SFS光谱的Δλ集上同时使用了15种一类分类方法。对于诸如马氏距离等依赖调谐参数的分类器,使用未优化的分类器。使用原始分类值,无需设置依赖分类器的阈值,尽管最终分类需要融合决策规则。为了进行定量分析,对这十个Δλ SFS光谱数据集的融合评估了两种校准方法。一种是通过偏最小二乘法(PLS)进行多变量校准。第二种方法是单变量校准过程,其中SFS光谱在各自的SFS光谱范围内求和,也称为曲线下面积(AUC)。对于玉米油的掺假检测和定量,与单独使用十个Δλ间隔的SFS特定数据集相比,融合后的预测误差会降低。对于这个阿甘油数据集,AUC方法通常提供与PLS相当的预测误差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验