Suppr超能文献

使用五种不同定义对外科手术用智能手机 APP 模型预测大量输血需求的验证。

External validation of a smartphone app model to predict the need for massive transfusion using five different definitions.

机构信息

From the Division of Burns, Trauma and Critical Care, Department of Surgery (E.H., M.C., H.P.), University of Texas at Southwestern Medical Center, Dallas, Texas; Department of Clinical Pathology (M.M.), Harvard Medical School, Boston, Massachusetts; Division of Trauma and Critical Care, Department of Surgery (E.M.), School of Medicine, University of Washington, Seattle, Washington; Division of Trauma, Critical Care, and Acute Care Surgery (M.S.), School of Medicine, Oregon Health & Science University, Portland, Oregon; Division of Trauma and Critical Care, Department of Surgery (K.B.), Medical College of Wisconsin, Milwaukee, Wisconsin; Division of General Surgery, Department of Surgery (M.J., P.M.), School of Medicine, University of California San Francisco, San Francisco, California; Division of Trauma, Department of Surgery (J.M.), School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Division of Trauma and General Surgery, Department of Surgery (L.A.), School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Biostatistics/Epidemiology/Research Design Core (M.R., E.F., D.d.J.), Center for Clinical and Translational Sciences, Division of Epidemiology, Human Genetics, and Environmental Sciences (M.R.), School of Public Health, and Center for Translational Injury Research, Division of Acute Care Surgery, Department of Surgery (J.H., B.C., E.F., D.d.J., C.W.), Medical School, University of Texas Health Science Center at Houston, Houston, Texas.

出版信息

J Trauma Acute Care Surg. 2018 Feb;84(2):397-402. doi: 10.1097/TA.0000000000001756.

Abstract

BACKGROUND

Previously, a model to predict massive transfusion protocol (MTP) (activation) was derived using a single-institution data set. The PRospective, Observational, Multicenter, Major Trauma Transfusion database was used to externally validate this model's ability to predict both MTP activation and massive transfusion (MT) administration using multiple MT definitions.

METHODS

The app model was used to calculate the predicted probability of MTP activation or MT delivery. The five definitions of MT used were: (1) 10 units packed red blood cells (PRBCs) in 24 hours, (2) Resuscitation Intensity score ≥ 4, (3) critical administration threshold, (4) 4 units PRBCs in 4 hours; and (5) 6 units PRBCs in 6 hours. Receiver operating curves were plotted to compare the predicted probability of MT with observed outcomes.

RESULTS

Of 1,245 patients in the data set, 297 (24%) met definition 1, 570 (47%) met definition 2, 364 (33%) met definition 3, 599 met definition 4 (49.1%), and 395 met definition 5 (32.4%). Regardless of the outcome (MTP activation or MT administration), the predictive ability of the app model was consistent: when predicting activation of the MTP, the area under the curve for the model was 0.694 and when predicting MT administration, the area under the curve ranged from 0.695 to 0.711.

CONCLUSION

Regardless of the definition of MT used, the app model demonstrates moderate ability to predict the need for MT in an external, homogenous population. Importantly, the app allows the model to be iteratively recalibrated ("machine learning") and thus could improve its predictive capability as additional data are accrued.

LEVEL OF EVIDENCE

Diagnostic test study/Prognostic study, level III.

摘要

背景

此前,使用单机构数据集推导了预测大量输血方案(MTP)(激活)的模型。前瞻性、观察性、多中心、严重创伤输血数据库用于外部验证该模型预测 MTP 激活和使用多种 MT 定义进行大量输血(MT)的能力。

方法

应用模型用于计算 MTP 激活或 MT 交付的预测概率。使用的五种 MT 定义是:(1)24 小时内 10 个单位浓缩红细胞(PRBC),(2)复苏强度评分≥4,(3)临界给药阈值,(4)4 个单位 PRBC 在 4 小时内;和(5)6 个单位 PRBC 在 6 小时内。绘制了接收器工作曲线以比较 MT 的预测概率与观察结果。

结果

在数据集的 1245 名患者中,297 名(24%)符合定义 1,570 名(47%)符合定义 2,364 名(33%)符合定义 3,599 名(49.1%)符合定义 4,395 名(32.4%)符合定义 5。无论结果(MTP 激活或 MT 管理)如何,应用模型的预测能力都是一致的:当预测 MTP 激活时,模型的曲线下面积为 0.694,当预测 MT 管理时,曲线下面积范围为 0.695 至 0.711。

结论

无论使用哪种 MT 定义,应用模型都能在外部同质人群中对 MT 的需求进行中等程度的预测。重要的是,该应用程序允许对模型进行迭代重新校准(“机器学习”),因此随着更多数据的累积,其预测能力可能会提高。

证据水平

诊断测试研究/预后研究,III 级。

相似文献

引用本文的文献

2
Digitalization in orthopaedics: a narrative review.骨科领域的数字化:一篇叙述性综述。
Front Surg. 2024 Jan 11;10:1325423. doi: 10.3389/fsurg.2023.1325423. eCollection 2023.
3
Machine learning in transfusion medicine: A scoping review.输血医学中的机器学习:一项范围综述。
Transfusion. 2024 Jan;64(1):162-184. doi: 10.1111/trf.17582. Epub 2023 Nov 10.

本文引用的文献

3
Clinical gestalt and the prediction of massive transfusion after trauma.临床整体判断与创伤后大量输血的预测
Injury. 2015 May;46(5):807-13. doi: 10.1016/j.injury.2014.12.026. Epub 2015 Feb 4.
10
Predicting massive blood transfusion using clinical scores post-trauma.创伤后使用临床评分预测大量输血。
Vox Sang. 2012 May;102(4):324-30. doi: 10.1111/j.1423-0410.2011.01564.x. Epub 2011 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验