Department of Chemical and Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States.
J Phys Chem B. 2018 Apr 5;122(13):3491-3499. doi: 10.1021/acs.jpcb.7b10677. Epub 2017 Dec 21.
The performance of nanoparticles in medical applications depends on their interactions with various molecules. Despite extensive research on this subject, it remains unclear where on an inhomogeneous nanoparticle molecules prefer to adsorb. Here we investigate the selectivity of glycine molecules for facets on five bare gold nanoparticles with diameters from 1.0 to 5.0 nm. Well-tempered metadynamics simulations are conducted to calculate the adsorption free-energy landscapes of a glycine molecule on various locations for the five gold nanoparticles in explicit water. We also calculate the glycine molecule's adsorption free energies on the five gold nanoparticles in vacuum and on three flat gold surfaces as a reference. The simulation results show that glycine molecules prefer to adsorb on the (110) facet for the 1.0 and 2.0 nm nanoparticles, the edges for the 3.0 nm nanoparticle, and the (111) facet for the 4.0 and 5.0 nm nanoparticles in water. The effect of water solvent on the selectivity is investigated through comparing the adsorption free-energy landscapes for glycine molecules on the nanoparticles in water and in vacuum. The area of the facet plays a key role in determining the selectivity of glycine molecules for the different facets, especially the shift of the selectivity as the nanoparticle diameter changes. Our simulations suggest that nanoparticle size and shape can be engineered to control the preferred adsorption location of molecules.
纳米粒子在医学应用中的性能取决于它们与各种分子的相互作用。尽管对此课题进行了广泛的研究,但仍不清楚分子在非均相纳米粒子上更倾向于吸附在何处。在这里,我们研究了甘氨酸分子在五个直径从 1.0 到 5.0nm 的裸露金纳米粒子的各个晶面上的选择性。我们进行了精心调整的元动力学模拟,以计算甘氨酸分子在明水中各种位置上在五个金纳米粒子上的吸附自由能图谱。我们还计算了甘氨酸分子在真空中和三个平坦金表面上在五个金纳米粒子上的吸附自由能,作为参考。模拟结果表明,在水中,甘氨酸分子优先吸附在 1.0nm 和 2.0nm 纳米粒子的(110)晶面上,在 3.0nm 纳米粒子上吸附在边缘,在 4.0nm 和 5.0nm 纳米粒子上吸附在(111)晶面上。通过比较甘氨酸分子在水中和真空中的纳米粒子上的吸附自由能图谱,研究了水溶剂对选择性的影响。晶面的面积在确定甘氨酸分子对不同晶面的选择性方面起着关键作用,特别是随着纳米粒子直径的变化,选择性的变化。我们的模拟表明,可以通过设计纳米粒子的尺寸和形状来控制分子的优先吸附位置。