Suppr超能文献

年度标准化引用次数的序列分析:基于特征分数和量表(CSS)方法的实证分析。

Sequence analysis of annually normalized citation counts: an empirical analysis based on the characteristic scores and scales (CSS) method.

作者信息

Bornmann Lutz, Ye Adam Y, Ye Fred Y

机构信息

Division for Science and Innovation Studies, Administrative Headquarters of the Max Planck Society, Hofgartenstr. 8, 80539 Munich, Germany.

Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871 China.

出版信息

Scientometrics. 2017;113(3):1665-1680. doi: 10.1007/s11192-017-2521-9. Epub 2017 Sep 19.

Abstract

In bibliometrics, only a few publications have focused on the citation histories of publications, where the citations for each citing year are assessed. In this study, therefore, annual categories of field- and time-normalized citation scores (based on the characteristic scores and scales method: 0 = poorly cited, 1 = fairly cited, 2 = remarkably cited, and 3 = outstandingly cited) are used to study the citation histories of papers. As our dataset, we used all articles published in 2000 and their annual citation scores until 2015. We generated annual sequences of citation scores (e.g., [Formula: see text]) and compared the sequences of annual citation scores of six broader fields (natural sciences, engineering and technology, medical and health sciences, agricultural sciences, social sciences, and humanities). In agreement with previous studies, our results demonstrate that sequences with poorly cited (0) and fairly cited (1) elements dominate the publication set; sequences with remarkably cited (3) and outstandingly cited (4) periods are rare. The highest percentages of constantly poorly cited papers can be found in the social sciences; the lowest percentages are in the agricultural sciences and humanities. The largest group of papers with remarkably cited (3) and/or outstandingly cited (4) periods shows an increasing impact over the citing years with the following orders of sequences: [Formula: see text] (6.01%), which is followed by [Formula: see text] (1.62%). Only 0.11% of the papers ( = 909) are constantly on the outstandingly cited level.

摘要

在文献计量学中,只有少数出版物关注出版物的被引历史,即评估每年的被引频次。因此,在本研究中,我们使用基于特征分数和量表方法的年度领域和时间标准化被引分数类别(0 = 被引频次低,1 = 被引频次一般,2 = 被引频次显著,3 = 被引频次极高)来研究论文的被引历史。作为我们的数据集,我们使用了2000年发表的所有文章及其截至2015年的年度被引分数。我们生成了年度被引分数序列(例如,[公式:见正文]),并比较了六个更广泛领域(自然科学、工程技术、医学与健康科学、农业科学、社会科学和人文科学)的年度被引分数序列。与之前的研究一致,我们的结果表明,被引频次低(0)和被引频次一般(1)的元素组成的序列在出版物集中占主导地位;被引频次显著(3)和被引频次极高(4)的时期组成的序列很少见。被引频次一直很低的论文比例最高的是社会科学领域;比例最低的是农业科学和人文科学领域。被引频次显著(3)和/或被引频次极高(4)时期的论文中,最大的一组在被引年份中的影响力呈上升趋势,序列顺序如下:[公式:见正文](6.01%),其次是[公式:见正文](1.62%)。只有0.11%的论文(= 909篇)一直处于被引频次极高的水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee88/5691089/2368b03ae72c/11192_2017_2521_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验