Li Tongfei, Lv Yinjie, Su Jiahui, Wang Yi, Yang Qian, Zhang Yiwei, Zhou Jiancheng, Xu Lin, Sun Dongmei, Tang Yawen
Jiangsu Key Laboratory of New Power Batteries Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China.
Jiangsu Optoelectronic Functional Materials and Engineering Laboratory School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China.
Adv Sci (Weinh). 2017 Aug 7;4(11):1700226. doi: 10.1002/advs.201700226. eCollection 2017 Nov.
The exploration of earth-abundant and high-efficiency electrocatalysts for the oxygen evolution reaction (OER) is of great significant for sustainable energy conversion and storage applications. Although spinel-type binary transition metal oxides (ABO, A, B = metal) represent a class of promising candidates for water oxidation catalysis, their intrinsically inferior electrical conductivity exert remarkably negative impacts on their electrochemical performances. Herein, we demonstrates a feasible electrospinning approach to concurrently synthesize CoFeO nanoparticles homogeneously embedded in 1D N-doped carbon nanofibers (denoted as CoFeO@N-CNFs). By integrating the catalytically active CoFeO nanoparticles with the N-doped carbon nanofibers, the as-synthesized CoFeO@N-CNF nanohybrid manifests superior OER performance with a low overpotential, a large current density, a small Tafel slope, and long-term durability in alkaline solution, outperforming the single component counterparts (pure CoFeO and N-doped carbon nanofibers) and the commercial RuO catalyst. Impressively, the overpotential of CoFeO@N-CNFs at the current density of 30.0 mA cm negatively shifts 186 mV as compared with the commercial RuO catalyst and the current density of the CoFeO@N-CNFs at 1.8 V is almost 3.4 times of that on RuO benchmark. The present work would open a new avenue for the exploration of cost-effective and efficient OER electrocatalysts to substitute noble metals for various renewable energy conversion/storage applications.
探索用于析氧反应(OER)的储量丰富且高效的电催化剂对于可持续能源转换和存储应用具有重要意义。尽管尖晶石型二元过渡金属氧化物(ABO,A、B = 金属)是一类有前景的水氧化催化候选材料,但其固有的低电导率对其电化学性能产生了显著的负面影响。在此,我们展示了一种可行的静电纺丝方法,可同时合成均匀嵌入一维氮掺杂碳纳米纤维中的CoFeO纳米颗粒(记为CoFeO@N-CNFs)。通过将催化活性的CoFeO纳米颗粒与氮掺杂碳纳米纤维相结合,所合成的CoFeO@N-CNF纳米杂化物在碱性溶液中表现出优异的OER性能,具有低过电位、大电流密度、小塔菲尔斜率和长期耐久性,优于单一组分对应物(纯CoFeO和氮掺杂碳纳米纤维)以及商业RuO催化剂。令人印象深刻的是,与商业RuO催化剂相比,CoFeO@N-CNFs在电流密度为30.0 mA cm时的过电位负移186 mV,并且CoFeO@N-CNFs在1.8 V时的电流密度几乎是RuO基准的3.4倍。本工作将为探索具有成本效益且高效的OER电催化剂开辟一条新途径,以替代贵金属用于各种可再生能源转换/存储应用。