Suppr超能文献

一刀切并不适用:衡量汇总基因组数据中的个人隐私

One Size Doesn't Fit All: Measuring Individual Privacy in Aggregate Genomic Data.

作者信息

Simmons Sean, Berger Bonnie

机构信息

Department of Mathematics and CSAIL, Massachusetts Institute of Technology.

出版信息

Proc IEEE Symp Secur Priv Workshops. 2015;2015:41-49. doi: 10.1109/SPW.2015.25. Epub 2015 Jul 20.

Abstract

Even in the aggregate, genomic data can reveal sensitive information about individuals. We present a new model-based measure, PrivMAF, that provides provable privacy guarantees for aggregate data (namely minor allele frequencies) obtained from genomic studies. Unlike many previous measures that have been designed to measure the total privacy lost by all participants in a study, PrivMAF gives an individual privacy measure for each participant in the study, not just an average measure. These individual measures can then be combined to measure the worst case privacy loss in the study. Our measure also allows us to quantify the privacy gains achieved by perturbing the data, either by adding noise or binning. Our findings demonstrate that both perturbation approaches offer significant privacy gains. Moreover, we see that these privacy gains can be achieved while minimizing perturbation (and thus maximizing the utility) relative to stricter notions of privacy, such as differential privacy. We test PrivMAF using genotype data from the Wellcome Trust Case Control Consortium, providing a more nuanced understanding of the privacy risks involved in an actual genome-wide association studies. Interestingly, our analysis demonstrates that the privacy implications of releasing MAFs from a study can differ greatly from individual to individual. An implementation of our method is available at http://privmaf.csail.mit.edu.

摘要

即使是汇总后的基因组数据也能揭示有关个人的敏感信息。我们提出了一种基于模型的新度量方法——PrivMAF,它能为从基因组研究中获得的汇总数据(即次要等位基因频率)提供可证明的隐私保证。与许多以前旨在衡量研究中所有参与者总体隐私损失的度量方法不同,PrivMAF为研究中的每个参与者提供了个体隐私度量,而不仅仅是一个平均度量。然后可以将这些个体度量结合起来,以衡量研究中最坏情况下的隐私损失。我们的度量方法还使我们能够量化通过对数据进行扰动(无论是添加噪声还是分箱)所实现的隐私增益。我们的研究结果表明,这两种扰动方法都能带来显著的隐私增益。此外,我们发现,相对于更严格的隐私概念(如差分隐私),在最小化扰动(从而最大化效用)的同时可以实现这些隐私增益。我们使用来自威康信托病例对照协会的基因型数据对PrivMAF进行了测试,从而对实际全基因组关联研究中涉及的隐私风险有了更细致入微的理解。有趣的是,我们的分析表明,从一项研究中公布次要等位基因频率所带来的隐私影响在个体之间可能有很大差异。我们方法的实现可在http://privmaf.csail.mit.edu获取。

相似文献

4
Realizing privacy preserving genome-wide association studies.实现隐私保护的全基因组关联研究。
Bioinformatics. 2016 May 1;32(9):1293-300. doi: 10.1093/bioinformatics/btw009. Epub 2016 Jan 14.
9
Privacy-Preserving Database Fingerprinting.隐私保护数据库指纹识别
NDDS Symp. 2023 Feb-Mar;2023. doi: 10.14722/ndss.2023.24693.

本文引用的文献

2
Routes for breaching and protecting genetic privacy.突破和保护遗传隐私的途径。
Nat Rev Genet. 2014 Jun;15(6):409-21. doi: 10.1038/nrg3723. Epub 2014 May 8.
4
Identifying personal genomes by surname inference.姓氏推断识别个人基因组。
Science. 2013 Jan 18;339(6117):321-4. doi: 10.1126/science.1229566.
6
Toward practicing privacy.走向实践隐私。
J Am Med Inform Assoc. 2013 Jan 1;20(1):102-8. doi: 10.1136/amiajnl-2012-001047.
7
Biomedical data privacy: problems, perspectives, and recent advances.生物医学数据隐私:问题、前景与最新进展。
J Am Med Inform Assoc. 2013 Jan 1;20(1):2-6. doi: 10.1136/amiajnl-2012-001509. Epub 2012 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验