Suppr超能文献

七年之痒:2017年的全面分析干扰化合物(PAINS)——效用与局限

Seven Year Itch: Pan-Assay Interference Compounds (PAINS) in 2017-Utility and Limitations.

作者信息

Baell Jonathan B, Nissink J Willem M

机构信息

Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia.

School of Pharmaceutical Sciences, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.

出版信息

ACS Chem Biol. 2018 Jan 19;13(1):36-44. doi: 10.1021/acschembio.7b00903. Epub 2017 Dec 26.

Abstract

Pan-Assay Interference Compounds (PAINS) are very familiar to medicinal chemists who have spent time fruitlessly trying to optimize these nonprogressible compounds. Electronic filters formulated to recognize PAINS can process hundreds and thousands of compounds in seconds and are in widespread current use to identify PAINS in order to exclude them from further analysis. However, this practice is fraught with danger because such black box treatment is simplistic. Here, we outline for the first time all necessary considerations for the appropriate use of PAINS filters.

摘要

泛分析干扰化合物(PAINS)对于那些花费时间徒劳地试图优化这些无进展化合物的药物化学家来说并不陌生。为识别PAINS而设计的电子过滤器可以在几秒钟内处理成千上万种化合物,并且目前被广泛用于识别PAINS,以便将它们排除在进一步分析之外。然而,这种做法充满危险,因为这种黑箱处理过于简单化。在这里,我们首次概述了正确使用PAINS过滤器所需考虑的所有因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/900f/5778390/b6d060d20ac7/cb-2017-00903z_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验