Qiu Yunguang, Hou Yuan, Wetzel Liam, Caldwell Jessica Z K, Zhu Xiongwei, Pieper Andrew A, Liu Tian, Cheng Feixiong
Cleveland Clinic Genome Center, Cleveland Clinic Research, Cleveland Clinic, Cleveland, OH 44195, USA.
Genomic Medicine Institute, Cleveland Clinic Research, Cleveland Clinic, Cleveland, OH 44195, USA.
Res Sq. 2025 Aug 18:rs.3.rs-7207381. doi: 10.21203/rs.3.rs-7207381/v1.
Alzheimer's disease (AD) exhibits metabolic heterogeneity; yet, the consequences on metabolic dynamics in a cell-type-specific manner and the underlying metabolite-sensor network basis remain unclear. Here, we show that neurons exhibit a striking decrease in energy and lipid-related metabolic activity, contrasted by an increase in microglial metabolism associated with neuroinflammation. To identify brain cell-type specific master metabolic regulators underlying the metabolic alterations of AD, we introduce scFUMES (ingle ell nctional tabolite-ensor), an algorithm integrating single-cell RNA sequencing, interactomics (protein-protein interactions), genomics, transcriptomics, and metabolomics from large human brain biobanks. Applied to two AD-vulnerable regions (middle temporal gyrus and dorsolateral prefrontal cortex), scFUMES uncovers hundreds of AD-associated regulators, with neurons and microglia showing the most interactions. Particularly, scFUMES pinpoints genetics-informed master metabolic regulators across AD severity, sex and genotype (e.g., PPARD-glycerol in microglia). Experimental testing reveals that two interaction pairs predicted by scFUMES, neuronal palmitic acid bound fatty acid binding protein 3 and gut metabolite indole-3-propionic acid binding to kynurenine aminotransferase 1, both lower pathological tau species in AD. In summary, scFUMES identifies cell type-specific master metabolic regulators, offering insights into cellular metabolic heterogeneity and metabolism-targeted therapeutic strategies for AD and neurodegenerative diseases if broadly applied.
阿尔茨海默病(AD)存在代谢异质性;然而,以细胞类型特异性方式对代谢动力学产生的影响以及潜在的代谢物传感器网络基础仍不清楚。在此,我们表明神经元的能量和脂质相关代谢活动显著下降,与之形成对比的是,与神经炎症相关的小胶质细胞代谢增加。为了确定AD代谢改变背后的脑细胞类型特异性主要代谢调节因子,我们引入了scFUMES(单细胞功能代谢物传感器),这是一种整合来自大型人类脑生物样本库的单细胞RNA测序、相互作用组学(蛋白质 - 蛋白质相互作用)、基因组学、转录组学和代谢组学的算法。应用于两个AD易损区域(颞中回和背外侧前额叶皮质),scFUMES发现了数百个与AD相关的调节因子,其中神经元和小胶质细胞的相互作用最为显著。特别是,scFUMES确定了跨AD严重程度、性别和基因型的基于遗传学的主要代谢调节因子(例如,小胶质细胞中的PPARD - 甘油)。实验测试表明,scFUMES预测的两个相互作用对,即神经元中的棕榈酸结合脂肪酸结合蛋白3和肠道代谢物吲哚 - 3 - 丙酸结合犬尿氨酸转氨酶1,均可降低AD中的病理性tau蛋白种类。总之,scFUMES识别出细胞类型特异性主要代谢调节因子,为细胞代谢异质性以及AD和神经退行性疾病的代谢靶向治疗策略提供了见解,如果广泛应用的话。