文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

《坏苹果:来自嘈杂证据的滥交模式》

Badapple: promiscuity patterns from noisy evidence.

作者信息

Yang Jeremy J, Ursu Oleg, Lipinski Christopher A, Sklar Larry A, Oprea Tudor I, Bologa Cristian G

机构信息

Translational Informatics Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131 USA.

10 Connshire Drive, Waterford, CT 06385-4122 USA.

出版信息

J Cheminform. 2016 May 28;8:29. doi: 10.1186/s13321-016-0137-3. eCollection 2016.


DOI:10.1186/s13321-016-0137-3
PMID:27239230
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4884375/
Abstract

BACKGROUND: Bioassay data analysis continues to be an essential, routine, yet challenging task in modern drug discovery and chemical biology research. The challenge is to infer reliable knowledge from big and noisy data. Some aspects of this problem are general with solutions informed by existing and emerging data science best practices. Some aspects are domain specific, and rely on expertise in bioassay methodology and chemical biology. Testing compounds for biological activity requires complex and innovative methodology, producing results varying widely in accuracy, precision, and information content. Hit selection criteria involve optimizing such that the overall probability of success in a project is maximized, and resource-wasteful "false trails" are avoided. This "fail-early" approach is embraced both in pharmaceutical and academic drug discovery, since follow-up capacity is resource-limited. Thus, early identification of likely promiscuous compounds has practical value. RESULTS: Here we describe an algorithm for identifying likely promiscuous compounds via associated scaffolds which combines general and domain-specific features to assist and accelerate drug discovery informatics, called Badapple: bioassay-data associative promiscuity pattern learning engine. Results are described from an analysis using data from MLP assays via the BioAssay Research Database (BARD) http://bard.nih.gov. Specific examples are analyzed in the context of medicinal chemistry, to illustrate associations with mechanisms of promiscuity. Badapple has been developed at UNM, released and deployed for public use two ways: (1) BARD plugin, integrated into the public BARD REST API and BARD web client; and (2) public web app hosted at UNM. CONCLUSIONS: Badapple is a method for rapidly identifying likely promiscuous compounds via associated scaffolds. Badapple generates a score associated with a pragmatic, empirical definition of promiscuity, with the overall goal to identify "false trails" and streamline workflows. Unlike methods reliant on expert curation of chemical substructure patterns, Badapple is fully evidence-driven, automated, self-improving via integration of additional data, and focused on scaffolds. Badapple is robust with respect to noise and errors, and skeptical of scanty evidence.

摘要

背景:生物测定数据分析在现代药物发现和化学生物学研究中仍然是一项重要、常规但具有挑战性的任务。挑战在于从大量嘈杂的数据中推断出可靠的知识。这个问题的一些方面具有普遍性,可通过现有和新兴的数据科学最佳实践来解决。一些方面则是特定领域的,依赖于生物测定方法和化学生物学方面的专业知识。测试化合物的生物活性需要复杂且创新的方法,所产生的结果在准确性、精密度和信息含量方面差异很大。命中选择标准涉及进行优化,以使项目成功的总体概率最大化,并避免浪费资源的“错误线索”。这种“尽早失败”的方法在制药和学术药物发现中都被采用,因为后续研究能力受到资源限制。因此,尽早识别可能具有混杂活性的化合物具有实际价值。 结果:在此,我们描述了一种通过相关支架识别可能具有混杂活性的化合物的算法,该算法结合了通用和特定领域的特征,以辅助和加速药物发现信息学,称为Badapple:生物测定数据关联混杂模式学习引擎。使用通过生物测定研究数据库(BARD)http://bard.nih.gov获取的MLP测定数据进行分析,展示了结果。在药物化学背景下分析了具体示例,以说明与混杂机制的关联。Badapple是由新墨西哥大学开发的,通过两种方式发布并供公众使用:(1)BARD插件,集成到公共BARD REST API和BARD网络客户端中;(2)新墨西哥大学托管的公共网络应用程序。 结论:Badapple是一种通过相关支架快速识别可能具有混杂活性的化合物的方法。Badapple生成一个与实用的、基于经验的混杂定义相关的分数,总体目标是识别“错误线索”并简化工作流程。与依赖专家策划化学子结构模式的方法不同,Badapple完全由证据驱动,自动化,通过整合额外数据自我改进,并且专注于支架。Badapple对噪声和错误具有鲁棒性,并且对证据不足持怀疑态度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffd/4884375/94914d069e24/13321_2016_137_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffd/4884375/f1f8cd748115/13321_2016_137_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffd/4884375/a663c52bb537/13321_2016_137_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffd/4884375/9e47a9fbdb6f/13321_2016_137_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffd/4884375/74e38f0984ec/13321_2016_137_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffd/4884375/6adf80b781c6/13321_2016_137_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffd/4884375/ebf1c821979c/13321_2016_137_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffd/4884375/94914d069e24/13321_2016_137_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffd/4884375/f1f8cd748115/13321_2016_137_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffd/4884375/a663c52bb537/13321_2016_137_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffd/4884375/9e47a9fbdb6f/13321_2016_137_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffd/4884375/74e38f0984ec/13321_2016_137_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffd/4884375/6adf80b781c6/13321_2016_137_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffd/4884375/ebf1c821979c/13321_2016_137_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffd/4884375/94914d069e24/13321_2016_137_Fig7_HTML.jpg

相似文献

[1]
Badapple: promiscuity patterns from noisy evidence.

J Cheminform. 2016-5-28

[2]
BioAssay Research Database (BARD): chemical biology and probe-development enabled by structured metadata and result types.

Nucleic Acids Res. 2015-1

[3]
An Overview of the Challenges in Designing, Integrating, and Delivering BARD: A Public Chemical-Biology Resource and Query Portal for Multiple Organizations, Locations, and Disciplines.

J Biomol Screen. 2014-6

[4]
Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters.

J Chem Inf Model. 2019-1-25

[5]
The essential roles of chemistry in high-throughput screening triage.

Future Med Chem. 2014-7

[6]
Matched molecular pair analysis of small molecule microarray data identifies promiscuity cliffs and reveals molecular origins of extreme compound promiscuity.

J Med Chem. 2012-10-22

[7]
PubChem BioAssay: 2014 update.

Nucleic Acids Res. 2013-11-5

[8]
Prediction of Promiscuity Cliffs Using Machine Learning.

Mol Inform. 2021-1

[9]
Identifying actives from HTS data sets: practical approaches for the selection of an appropriate HTS data-processing method and quality control review.

J Biomol Screen. 2011-1

[10]
Activity profile relationships between structurally similar promiscuous compounds.

Eur J Med Chem. 2013-9-12

引用本文的文献

[1]
CACHE Challenge #2: Targeting the RNA Site of the SARS-CoV-2 Helicase Nsp13.

J Chem Inf Model. 2025-7-14

[2]
Identification of Orthosteric GABA Receptor Ligands by Virtual Screening and Validation.

ACS Omega. 2025-5-16

[3]
Preclinical studies of RA475, a guanidine-substituted spirocyclic candidate RPN13/ADRM1 inhibitor for treatment of ovarian cancer.

PLoS One. 2024

[4]
ChemFH: an integrated tool for screening frequent false positives in chemical biology and drug discovery.

Nucleic Acids Res. 2024-7-5

[5]
Tackling assay interference associated with small molecules.

Nat Rev Chem. 2024-5

[6]
Molecular dynamics simulations as a guide for modulating small molecule aggregation.

J Comput Aided Mol Des. 2024-3-12

[7]
Development and anticancer properties of Up284, a spirocyclic candidate ADRM1/RPN13 inhibitor.

PLoS One. 2023

[8]
Screening for bilayer-active and likely cytotoxic molecules reveals bilayer-mediated regulation of cell function.

J Gen Physiol. 2023-4-3

[9]
DrugCentral 2023 extends human clinical data and integrates veterinary drugs.

Nucleic Acids Res. 2023-1-6

[10]
On drug discovery against infectious diseases and academic medicinal chemistry contributions.

Beilstein J Org Chem. 2022-9-29

本文引用的文献

[1]
The promise and peril of chemical probes.

Nat Chem Biol. 2015-8

[2]
An Overview of the Challenges in Designing, Integrating, and Delivering BARD: A Public Chemical-Biology Resource and Query Portal for Multiple Organizations, Locations, and Disciplines.

J Biomol Screen. 2014-6

[3]
The University of New Mexico Center for Molecular Discovery.

Comb Chem High Throughput Screen. 2014-3

[4]
Cheminformatics aspects of high throughput screening: from robots to models: symposium summary.

J Comput Aided Mol Des. 2013-5-1

[5]
Formalization, annotation and analysis of diverse drug and probe screening assay datasets using the BioAssay Ontology (BAO).

PLoS One. 2012-11-14

[6]
Polypharmacology directed compound data mining: identification of promiscuous chemotypes with different activity profiles and comparison to approved drugs.

J Chem Inf Model. 2010-11-12

[7]
Investigation of the relationship between topology and selectivity for druglike molecules.

J Med Chem. 2010-11-11

[8]
New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays.

J Med Chem. 2010-4-8

[9]
A crowdsourcing evaluation of the NIH chemical probes.

Nat Chem Biol. 2009-7

[10]
Molecular biology. Industrial-style screening meets academic biology.

Science. 2008-8-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索