Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA.
International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan, Nigeria.
Genet Sel Evol. 2017 Dec 4;49(1):88. doi: 10.1186/s12711-017-0361-y.
Genomic selection (GS) promises to accelerate genetic gain in plant breeding programs especially for crop species such as cassava that have long breeding cycles. Practically, to implement GS in cassava breeding, it is necessary to evaluate different GS models and to develop suitable models for an optimized breeding pipeline. In this paper, we compared (1) prediction accuracies from a single-trait (uT) and a multi-trait (MT) mixed model for a single-environment genetic evaluation (Scenario 1), and (2) accuracies from a compound symmetric multi-environment model (uE) parameterized as a univariate multi-kernel model to a multivariate (ME) multi-environment mixed model that accounts for genotype-by-environment interaction for multi-environment genetic evaluation (Scenario 2). For these analyses, we used 16 years of public cassava breeding data for six target cassava traits and a fivefold cross-validation scheme with 10-repeat cycles to assess model prediction accuracies.
In Scenario 1, the MT models had higher prediction accuracies than the uT models for all traits and locations analyzed, which amounted to on average a 40% improved prediction accuracy. For Scenario 2, we observed that the ME model had on average (across all locations and traits) a 12% improved prediction accuracy compared to the uE model.
We recommend the use of multivariate mixed models (MT and ME) for cassava genetic evaluation. These models may be useful for other plant species.
基因组选择 (GS) 有望加速植物育种计划的遗传增益,特别是对于木薯等具有长育种周期的作物物种。实际上,要在木薯育种中实施 GS,有必要评估不同的 GS 模型,并为优化的育种管道开发合适的模型。在本文中,我们比较了 (1) 单一性状 (uT) 和多性状 (MT) 混合模型在单一环境遗传评估中的预测准确性(情景 1),以及 (2) 多环境混合模型中复合对称多环境模型 (uE) 参数化为单变量多核模型与多环境混合模型 (ME) 的准确性,后者考虑了基因型-环境互作在多环境遗传评估中的作用(情景 2)。对于这些分析,我们使用了 16 年的公共木薯育种数据,用于六个目标木薯性状和五重交叉验证方案,具有 10 次重复周期,以评估模型预测准确性。
在情景 1 中,MT 模型对于所有分析的性状和地点都比 uT 模型具有更高的预测准确性,平均提高了 40%的预测准确性。对于情景 2,我们观察到 ME 模型与 uE 模型相比,平均(跨所有地点和性状)提高了 12%的预测准确性。
我们建议在木薯遗传评估中使用多变量混合模型 (MT 和 ME)。这些模型可能对其他植物物种有用。