Suppr超能文献

非洲木薯单变量和多变量基因组预测模型的准确性。

Accuracies of univariate and multivariate genomic prediction models in African cassava.

机构信息

Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA.

International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan, Nigeria.

出版信息

Genet Sel Evol. 2017 Dec 4;49(1):88. doi: 10.1186/s12711-017-0361-y.

Abstract

BACKGROUND

Genomic selection (GS) promises to accelerate genetic gain in plant breeding programs especially for crop species such as cassava that have long breeding cycles. Practically, to implement GS in cassava breeding, it is necessary to evaluate different GS models and to develop suitable models for an optimized breeding pipeline. In this paper, we compared (1) prediction accuracies from a single-trait (uT) and a multi-trait (MT) mixed model for a single-environment genetic evaluation (Scenario 1), and (2) accuracies from a compound symmetric multi-environment model (uE) parameterized as a univariate multi-kernel model to a multivariate (ME) multi-environment mixed model that accounts for genotype-by-environment interaction for multi-environment genetic evaluation (Scenario 2). For these analyses, we used 16 years of public cassava breeding data for six target cassava traits and a fivefold cross-validation scheme with 10-repeat cycles to assess model prediction accuracies.

RESULTS

In Scenario 1, the MT models had higher prediction accuracies than the uT models for all traits and locations analyzed, which amounted to on average a 40% improved prediction accuracy. For Scenario 2, we observed that the ME model had on average (across all locations and traits) a 12% improved prediction accuracy compared to the uE model.

CONCLUSIONS

We recommend the use of multivariate mixed models (MT and ME) for cassava genetic evaluation. These models may be useful for other plant species.

摘要

背景

基因组选择 (GS) 有望加速植物育种计划的遗传增益,特别是对于木薯等具有长育种周期的作物物种。实际上,要在木薯育种中实施 GS,有必要评估不同的 GS 模型,并为优化的育种管道开发合适的模型。在本文中,我们比较了 (1) 单一性状 (uT) 和多性状 (MT) 混合模型在单一环境遗传评估中的预测准确性(情景 1),以及 (2) 多环境混合模型中复合对称多环境模型 (uE) 参数化为单变量多核模型与多环境混合模型 (ME) 的准确性,后者考虑了基因型-环境互作在多环境遗传评估中的作用(情景 2)。对于这些分析,我们使用了 16 年的公共木薯育种数据,用于六个目标木薯性状和五重交叉验证方案,具有 10 次重复周期,以评估模型预测准确性。

结果

在情景 1 中,MT 模型对于所有分析的性状和地点都比 uT 模型具有更高的预测准确性,平均提高了 40%的预测准确性。对于情景 2,我们观察到 ME 模型与 uE 模型相比,平均(跨所有地点和性状)提高了 12%的预测准确性。

结论

我们建议在木薯遗传评估中使用多变量混合模型 (MT 和 ME)。这些模型可能对其他植物物种有用。

相似文献

1
Accuracies of univariate and multivariate genomic prediction models in African cassava.
Genet Sel Evol. 2017 Dec 4;49(1):88. doi: 10.1186/s12711-017-0361-y.
2
Genomic selection for productive traits in biparental cassava breeding populations.
PLoS One. 2019 Jul 25;14(7):e0220245. doi: 10.1371/journal.pone.0220245. eCollection 2019.
6
Genomic Prediction for Grain Yield and Yield-Related Traits in Chinese Winter Wheat.
Int J Mol Sci. 2020 Feb 17;21(4):1342. doi: 10.3390/ijms21041342.
10
Improving Genomic Prediction in Cassava Field Experiments Using Spatial Analysis.
G3 (Bethesda). 2018 Jan 4;8(1):53-62. doi: 10.1534/g3.117.300323.

引用本文的文献

3
4
Multi-trait selection in multi-environments for performance and stability in cassava genotypes.
Front Plant Sci. 2023 Oct 30;14:1282221. doi: 10.3389/fpls.2023.1282221. eCollection 2023.
5
Improved multi-trait prediction of wheat end-product quality traits by integrating NIR-predicted phenotypes.
Front Plant Sci. 2023 May 18;14:1167221. doi: 10.3389/fpls.2023.1167221. eCollection 2023.
6
Single and multi-trait genomic prediction for agronomic traits in Euterpe edulis.
PLoS One. 2023 Apr 7;18(4):e0275407. doi: 10.1371/journal.pone.0275407. eCollection 2023.
7
Effects of common full-sib families on accuracy of genomic prediction for tagging weight in striped catfish .
Front Genet. 2023 Jan 4;13:1081246. doi: 10.3389/fgene.2022.1081246. eCollection 2022.
9
Multi-trait genome prediction of new environments with partial least squares.
Front Genet. 2022 Sep 5;13:966775. doi: 10.3389/fgene.2022.966775. eCollection 2022.
10
Marker density and statistical model designs to increase accuracy of genomic selection for wool traits in Angora rabbits.
Front Genet. 2022 Sep 2;13:968712. doi: 10.3389/fgene.2022.968712. eCollection 2022.

本文引用的文献

1
Genomic Prediction of Genotype × Environment Interaction Kernel Regression Models.
Plant Genome. 2016 Nov;9(3). doi: 10.3835/plantgenome2016.03.0024.
3
Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.
G3 (Bethesda). 2017 Jan 5;7(1):41-53. doi: 10.1534/g3.116.035584.
5
Genomic Selection in Multi-environment Crop Trials.
G3 (Bethesda). 2016 May 3;6(5):1313-26. doi: 10.1534/g3.116.027524.
6
Genotype by environment interactions on culling rates and 305-day milk yield of Holstein cows in 3 US regions.
J Dairy Sci. 2015 Aug;98(8):5796-805. doi: 10.3168/jds.2014-9242. Epub 2015 May 28.
7
Comparison of single-trait to multi-trait national evaluations for yield, health, and fertility.
J Dairy Sci. 2014 Dec;97(12):7952-62. doi: 10.3168/jds.2014-8489. Epub 2014 Oct 3.
8
Prediction of expected genetic variation within groups of offspring for innovative mating schemes.
Genet Sel Evol. 2014 Jul 2;46(1):42. doi: 10.1186/1297-9686-46-42.
9
Comparison of single-trait and multiple-trait genomic prediction models.
BMC Genet. 2014 Mar 4;15:30. doi: 10.1186/1471-2156-15-30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验