Suppr超能文献

利用外显子捕获作为基因分型平台,预测辐射松高度和木材密度的时空基因组预测准确性。

Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform.

机构信息

Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.

Scion (New Zealand Forest Research Institute Ltd.), 49 Sala Street, Whakarewarewa, Rotorua, 3046, New Zealand.

出版信息

BMC Genomics. 2017 Dec 2;18(1):930. doi: 10.1186/s12864-017-4258-5.

Abstract

BACKGROUND

Genomic selection (GS) can offer unprecedented gains, in terms of cost efficiency and generation turnover, to forest tree selective breeding; especially for late expressing and low heritability traits. Here, we used: 1) exome capture as a genotyping platform for 1372 Douglas-fir trees representing 37 full-sib families growing on three sites in British Columbia, Canada and 2) height growth and wood density (EBVs), and deregressed estimated breeding values (DEBVs) as phenotypes. Representing models with (EBVs) and without (DEBVs) pedigree structure. Ridge regression best linear unbiased predictor (RR-BLUP) and generalized ridge regression (GRR) were used to assess their predictive accuracies over space (within site, cross-sites, multi-site, and multi-site to single site) and time (age-age/ trait-trait).

RESULTS

The RR-BLUP and GRR models produced similar predictive accuracies across the studied traits. Within-site GS prediction accuracies with models trained on EBVs were high (RR-BLUP: 0.79-0.91 and GRR: 0.80-0.91), and were generally similar to the multi-site (RR-BLUP: 0.83-0.91, GRR: 0.83-0.91) and multi-site to single-site predictive accuracies (RR-BLUP: 0.79-0.92, GRR: 0.79-0.92). Cross-site predictions were surprisingly high, with predictive accuracies within a similar range (RR-BLUP: 0.79-0.92, GRR: 0.78-0.91). Height at 12 years was deemed the earliest acceptable age at which accurate predictions can be made concerning future height (age-age) and wood density (trait-trait). Using DEBVs reduced the accuracies of all cross-validation procedures dramatically, indicating that the models were tracking pedigree (family means), rather than marker-QTL LD.

CONCLUSIONS

While GS models' prediction accuracies were high, the main driving force was the pedigree tracking rather than LD. It is likely that many more markers are needed to increase the chance of capturing the LD between causal genes and markers.

摘要

背景

基因组选择(GS)可以在成本效率和世代更替方面为林木选择育种带来前所未有的收益;特别是对于表达后期和低遗传力的性状。在这里,我们使用了:1)外显子捕获作为一个基因分型平台,用于 1372 棵道格拉斯冷杉树,代表 37 个全同胞家系,生长在加拿大不列颠哥伦比亚省的三个地点;2)高度生长和木材密度(EBV)和去血统估计育种值(DEBV)作为表型。代表具有(EBV)和没有(DEBV)谱系结构的模型。岭回归最佳线性无偏预测(RR-BLUP)和广义岭回归(GRR)用于评估它们在空间(站点内、站点间、多站点和多站点到单站点)和时间(年龄-年龄/性状-性状)上的预测精度。

结果

RR-BLUP 和 GRR 模型在研究的性状上产生了相似的预测精度。使用 EBV 训练的模型在站点内的 GS 预测精度较高(RR-BLUP:0.79-0.91 和 GRR:0.80-0.91),并且通常与多站点(RR-BLUP:0.83-0.91,GRR:0.83-0.91)和多站点到单站点预测精度相似(RR-BLUP:0.79-0.92,GRR:0.79-0.92)。站点间的预测结果令人惊讶地高,预测精度在相似范围内(RR-BLUP:0.79-0.92,GRR:0.78-0.91)。12 岁时的高度被认为是可以对未来高度(年龄-年龄)和木材密度(性状-性状)进行准确预测的最早可接受年龄。使用 DEBV 大大降低了所有交叉验证程序的精度,表明模型在跟踪谱系(家系平均值),而不是标记-QTL LD。

结论

尽管 GS 模型的预测精度较高,但主要驱动力是谱系跟踪,而不是 LD。很可能需要更多的标记来增加捕获因果基因与标记之间 LD 的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e49/5712148/c2721d95e47c/12864_2017_4258_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验