Garvan Institute of Medical ResearchSydney, New South Wales, Australia
Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium.
J Endocrinol. 2018 Feb;236(2):R109-R143. doi: 10.1530/JOE-17-0516. Epub 2017 Dec 4.
Like all the cells of an organism, pancreatic β-cells originate from embryonic stem cells through a complex cellular process termed differentiation. Differentiation involves the coordinated and tightly controlled activation/repression of specific effectors and gene clusters in a time-dependent fashion thereby giving rise to particular morphological and functional cellular features. Interestingly, cellular differentiation is not a unidirectional process. Indeed, growing evidence suggests that under certain conditions, mature β-cells can lose, to various degrees, their differentiated phenotype and cellular identity and regress to a less differentiated or a precursor-like state. This concept is termed dedifferentiation and has been proposed, besides cell death, as a contributing factor to the loss of functional β-cell mass in diabetes. β-cell dedifferentiation involves: (1) the downregulation of β-cell-enriched genes, including key transcription factors, insulin, glucose metabolism genes, protein processing and secretory pathway genes; (2) the concomitant upregulation of genes suppressed or expressed at very low levels in normal β-cells, the β-cell forbidden genes; and (3) the likely upregulation of progenitor cell genes. These alterations lead to phenotypic reconfiguration of β-cells and ultimately defective insulin secretion. While the major role of glucotoxicity in β-cell dedifferentiation is well established, the precise mechanisms involved are still under investigation. This review highlights the identified molecular mechanisms implicated in β-cell dedifferentiation including oxidative stress, endoplasmic reticulum (ER) stress, inflammation and hypoxia. It discusses the role of and inhibitor of differentiation proteins and underscores the emerging role of non-coding RNAs. Finally, it proposes a novel hypothesis of β-cell dedifferentiation as a potential adaptive mechanism to escape cell death under stress conditions.
与生物体的所有细胞一样,胰腺 β 细胞通过一个称为分化的复杂细胞过程起源于胚胎干细胞。分化涉及特定效应物和基因簇的协调和严格控制的激活/抑制,以时间依赖的方式产生特定的形态和功能细胞特征。有趣的是,细胞分化不是一个单向的过程。事实上,越来越多的证据表明,在某些条件下,成熟的β细胞可以在不同程度上失去其分化的表型和细胞身份,并退回到分化程度较低或类似前体细胞的状态。这个概念被称为去分化,并且除了细胞死亡之外,它被认为是导致糖尿病中功能性β细胞数量丧失的一个因素。β细胞去分化涉及:(1)下调β细胞丰富的基因,包括关键转录因子、胰岛素、葡萄糖代谢基因、蛋白质加工和分泌途径基因;(2)同时上调在正常β细胞中被抑制或表达水平极低的基因,即β细胞禁止基因;(3)可能上调祖细胞基因。这些改变导致β细胞表型重构,并最终导致胰岛素分泌缺陷。虽然糖毒性在β细胞去分化中的主要作用已经得到证实,但涉及的精确机制仍在研究中。这篇综述强调了已确定的与β细胞去分化相关的分子机制,包括氧化应激、内质网(ER)应激、炎症和缺氧。它讨论了分化蛋白和抑制剂的作用,并强调了非编码 RNA 的新兴作用。最后,它提出了β细胞去分化作为一种潜在的适应机制的新假说,以逃避应激条件下的细胞死亡。