Suppr超能文献

将随机试验与非实验性研究进行比较时在偏倚评估中的一种偏倚

A Bias in the Evaluation of Bias Comparing Randomized Trials with Nonexperimental Studies.

作者信息

Franklin Jessica M, Dejene Sara, Huybrechts Krista F, Wang Shirley V, Kulldorff Martin, Rothman Kenneth J

机构信息

Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

Research Triangle Institute, Research Triangle Park, NC, USA.

出版信息

Epidemiol Methods. 2017 Apr;6(1). doi: 10.1515/em-2016-0018. Epub 2017 Apr 22.

Abstract

In a recent article, the authors conducted a meta-analysis to compare estimated treatment effects from randomized trials with those derived from observational studies based on routinely collected data (RCD). They calculated a pooled relative odds ratio (ROR) of 1.31 (95% confidence interval [CI]: 1.03-1.65) and concluded that RCD studies systematically over-estimated protective effects. However, their meta-analysis inverted results for some clinical questions to force all estimates from RCD to be below 1. We evaluated the statistical properties of this pooled ROR, and found that the selective inversion rule employed in the original meta-analysis can positively bias the estimate of the ROR. We then repeated the random effects meta-analysis using a different inversion rule and found an estimated ROR of 0.98 (0.78-1.23), indicating the ROR is highly dependent on the direction of comparisons. As an alternative to the ROR, we calculated the observed proportion of clinical questions where the RCD and trial CIs overlap, as well as the expected proportion assuming no systematic difference between the studies. Out of 16 clinical questions, 50% CIs overlapped for 8 (50%; 25 to 75%) compared with an expected overlap of 60% assuming no systematic difference between RCD studies and trials. Thus, there was little evidence of a systematic difference in effect estimates between RCD and RCTs. Estimates of pooled RORs across distinct clinical questions are generally not interpretable and may be misleading.

摘要

在最近的一篇文章中,作者进行了一项荟萃分析,以比较随机试验得出的估计治疗效果与基于常规收集数据(RCD)的观察性研究得出的效果。他们计算出合并相对比值比(ROR)为1.31(95%置信区间[CI]:1.03 - 1.65),并得出结论,RCD研究系统性地高估了保护效果。然而,他们的荟萃分析颠倒了一些临床问题的结果,以使RCD的所有估计值都低于1。我们评估了这个合并ROR的统计特性,发现原始荟萃分析中采用的选择性颠倒规则会使ROR的估计产生正向偏差。然后,我们使用不同的颠倒规则重复了随机效应荟萃分析,发现估计的ROR为0.98(0.78 - 1.23),这表明ROR高度依赖于比较的方向。作为ROR的替代方法,我们计算了RCD和试验CI重叠的临床问题的观察比例,以及假设研究之间无系统差异时的预期比例。在16个临床问题中,8个(50%;25%至75%)的95%CI重叠,而假设RCD研究和试验之间无系统差异时的预期重叠率为60%。因此,几乎没有证据表明RCD和随机对照试验(RCT)在效应估计上存在系统差异。跨不同临床问题的合并ROR估计通常无法解释,可能会产生误导。

相似文献

1
A Bias in the Evaluation of Bias Comparing Randomized Trials with Nonexperimental Studies.
Epidemiol Methods. 2017 Apr;6(1). doi: 10.1515/em-2016-0018. Epub 2017 Apr 22.
3
Association between analytic strategy and estimates of treatment outcomes in meta-analyses.
JAMA. 2014 Aug 13;312(6):623-30. doi: 10.1001/jama.2014.8166.
4
Single-center trials show larger treatment effects than multicenter trials: evidence from a meta-epidemiologic study.
Ann Intern Med. 2011 Jul 5;155(1):39-51. doi: 10.7326/0003-4819-155-1-201107050-00006.
5
Observational studies using propensity score analysis underestimated the effect sizes in critical care medicine.
J Clin Epidemiol. 2014 Aug;67(8):932-9. doi: 10.1016/j.jclinepi.2014.02.018. Epub 2014 Apr 26.
6
8
Different methods of allocation to groups in randomized trials are associated with different levels of bias. A meta-epidemiological study.
J Clin Epidemiol. 2011 Oct;64(10):1070-5. doi: 10.1016/j.jclinepi.2010.12.018. Epub 2011 Apr 6.
9
Current use of routinely collected health data to complement randomized controlled trials: a meta-epidemiological survey.
CMAJ Open. 2016 Apr 6;4(2):E132-40. doi: 10.9778/cmajo.20150036. eCollection 2016 Apr-Jun.

引用本文的文献

2
Inadequate Reporting of Cointerventions, Other Methodological Factors, and Treatment Estimates in Cardiovascular Trials: A Meta-Epidemiological Study.
Mayo Clin Proc Innov Qual Outcomes. 2023 Jun 2;7(4):231-240. doi: 10.1016/j.mayocpiqo.2023.04.010. eCollection 2023 Aug.
4
Emulating Randomized Clinical Trials With Nonrandomized Real-World Evidence Studies: First Results From the RCT DUPLICATE Initiative.
Circulation. 2021 Mar 9;143(10):1002-1013. doi: 10.1161/CIRCULATIONAHA.120.051718. Epub 2020 Dec 17.
5
Benchmarking Observational Analyses Against Randomized Trials: a Review of Studies Assessing Propensity Score Methods.
J Gen Intern Med. 2020 May;35(5):1396-1404. doi: 10.1007/s11606-020-05713-5. Epub 2020 Mar 19.
6
Opportunities and challenges in using real-world data for health care.
J Clin Invest. 2020 Feb 3;130(2):565-574. doi: 10.1172/JCI129197.

本文引用的文献

2
The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement.
PLoS Med. 2015 Oct 6;12(10):e1001885. doi: 10.1371/journal.pmed.1001885. eCollection 2015 Oct.
3
Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials.
Cochrane Database Syst Rev. 2014 Apr 29;2014(4):MR000034. doi: 10.1002/14651858.MR000034.pub2.
4
Overestimation of risk ratios by odds ratios in trials and cohort studies: alternatives to logistic regression.
CMAJ. 2012 May 15;184(8):895-9. doi: 10.1503/cmaj.101715. Epub 2011 Dec 12.
6
The promise of comparative effectiveness research.
JAMA. 2011 Jan 26;305(4):400-1. doi: 10.1001/jama.2011.12.
7
Why observational studies should be among the tools used in comparative effectiveness research.
Health Aff (Millwood). 2010 Oct;29(10):1818-25. doi: 10.1377/hlthaff.2010.0666.
8
Utilization and outcomes of unprotected left main coronary artery stenting and coronary artery bypass graft surgery.
Ann Thorac Surg. 2008 Oct;86(4):1153-9. doi: 10.1016/j.athoracsur.2008.05.059.
10
Selective prescribing led to overestimation of the benefits of lipid-lowering drugs.
J Clin Epidemiol. 2006 Aug;59(8):819-28. doi: 10.1016/j.jclinepi.2005.12.012. Epub 2006 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验