Suppr超能文献

量化中和平面电极的双电层厚度:电容紧密性。

Quantifying the thickness of the electrical double layer neutralizing a planar electrode: the capacitive compactness.

作者信息

Guerrero-García Guillermo Iván, González-Tovar Enrique, Chávez-Páez Martín, Kłos Jacek, Lamperski Stanisław

机构信息

CONACYT - Instituto de Física de la Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí, Mexico.

出版信息

Phys Chem Chem Phys. 2017 Dec 20;20(1):262-275. doi: 10.1039/c7cp05433e.

Abstract

The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the differential and integral capacity, the electrode's surface charge density, and the mean electrostatic potential at the electrode's surface.

摘要

中和带电胶体或电极的离子云的空间扩展通常由与本体中支持带电流体相关的德拜长度来表征。这个空间长度自然地出现在点电荷的线性泊松 - 玻尔兹曼理论中,该理论是广泛使用的德亚金 - 朗道 - 韦弗 - 奥弗贝克形式体系的基石,用于描述带电大颗粒的胶体稳定性。根据定义,德拜长度与带电溶液的重要物理特征无关,比如胶体电荷、静电离子相关性、离子排除体积效应或特定的短程相互作用等等。为了始终如一地纳入这些特征,以便更准确地描述平面几何中不均匀带电流体的双电层厚度,我们在此提议使用电容紧致性概念,作为围绕小大离子的球形双电层紧致性的推广(冈萨雷斯 - 托瓦尔等人,《化学物理杂志》,2004年,120卷,9782页)。为了举例说明电容紧致性在表征外部电场中强耦合带电流体方面的有用性,我们使用积分方程理论和蒙特卡罗模拟来分析平面电极附近模型熔盐的电学性质。特别地,我们研究电极的电荷中和,以及电极 - 熔盐系统单位面积净电荷的最大反转作为离子浓度和电极电荷的函数。相关电容紧致性的行为根据高度相关带电流体的电荷中和能力来解释,这在微观层面证明了双电层的收缩/扩展。电容紧致性及其前两个导数用实验可测量的宏观性质来表示,比如微分和积分电容、电极的表面电荷密度以及电极表面的平均静电势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验