Trelles Jorge Abel, Lapponiab Maria Jose
Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Saenz Pena 352, Bernal B1868BXD. Argentina.
Curr Pharm Des. 2017 Dec 3. doi: 10.2174/1381612824666171204102204.
Nucleoside analogue (NAs) derivatives comprise a large family of pharmaceuticals clinically used as antitumoral and antiviral compounds. Originally, the production of NAs involved chemical synthesis, but a greener bioproduction alternative exists and involves the use of enzymes that catalyze transglycosylation reactions between modified purinic or pyrimidinic bases and sugars. To be considered as an option for industrial application, it is vital to immobilize these biocatalysts.
This article describes current methodologies for whole cell and protein immobilization mostly applied to the synthesis of important NAs. Immobilization describes ways of cell or enzyme confinement in diverse surfaces or matrixes. It is important to be familiar with the variety of matrixes and supports available prior to biocatalyst immobilization so the most adequate can be selected for the purpose sought.
From the different articles compiled, it can be acknowledged that the main methods for protein or cell stabilization are immobilization by adsorption, covalent, cross-linking and entrapment. The most widely used matrixes and supports are agar, alginate, polyacrylamide, sepharose derivatives, and acrylic resins, among others. Protein or cell stabilization has the advantage of stabilizing immobilization, favoring their facile separation from the reaction medium for further reuse and also making the purification of the final product easier. Moreover, biocatalyst stabilization allows a facile estimation of the economic cost of the bioprocess and of an eventual scale-up, being a basic requirement for industrial application.
In order to achieve successful biocatalyst immobilization, parameters such as biocatalyst stability, mechanical resistance, and reusability should be considered. This review describes and summarizes the methods used for the immobilization of biocatalysts for the synthesis of NAs in the last years.
核苷类似物(NAs)衍生物是临床上用作抗肿瘤和抗病毒化合物的一大类药物。最初,核苷类似物的生产涉及化学合成,但存在一种更环保的生物生产替代方法,即使用催化修饰的嘌呤或嘧啶碱基与糖之间转糖基化反应的酶。要被视为工业应用的一种选择,固定这些生物催化剂至关重要。
本文描述了目前主要应用于重要核苷类似物合成的全细胞和蛋白质固定化方法。固定化描述了细胞或酶在各种表面或基质中的限制方式。在固定化生物催化剂之前,熟悉可用的各种基质和载体很重要,以便为所需目的选择最合适的。
从汇编的不同文章中可以看出,蛋白质或细胞稳定化的主要方法是通过吸附、共价、交联和包埋进行固定化。最广泛使用的基质和载体包括琼脂、藻酸盐、聚丙烯酰胺、琼脂糖衍生物和丙烯酸树脂等。蛋白质或细胞稳定化具有稳定固定化的优点,有利于它们从反应介质中轻松分离以进一步重复使用,也使最终产品的纯化更容易。此外,生物催化剂稳定化便于估算生物过程的经济成本和最终扩大规模,这是工业应用的基本要求。
为了成功固定生物催化剂,应考虑生物催化剂稳定性、机械抗性和可重复使用性等参数。这篇综述描述并总结了近年来用于固定化生物催化剂以合成核苷类似物的方法。