Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
Stat Med. 2018 Mar 30;37(7):1086-1100. doi: 10.1002/sim.7564. Epub 2017 Dec 4.
Various semiparametric regression models have recently been proposed for the analysis of gap times between consecutive recurrent events. Among them, the semiparametric accelerated failure time (AFT) model is especially appealing owing to its direct interpretation of covariate effects on the gap times. In general, estimation of the semiparametric AFT model is challenging because the rank-based estimating function is a nonsmooth step function. As a result, solutions to the estimating equations do not necessarily exist. Moreover, the popular resampling-based variance estimation for the AFT model requires solving rank-based estimating equations repeatedly and hence can be computationally cumbersome and unstable. In this paper, we extend the induced smoothing approach to the AFT model for recurrent gap time data. Our proposed smooth estimating function permits the application of standard numerical methods for both the regression coefficients estimation and the standard error estimation. Large-sample properties and an asymptotic variance estimator are provided for the proposed method. Simulation studies show that the proposed method outperforms the existing nonsmooth rank-based estimating function methods in both point estimation and variance estimation. The proposed method is applied to the data analysis of repeated hospitalizations for patients in the Danish Psychiatric Center Register.
最近提出了各种半参数回归模型来分析连续复发事件之间的间隔时间。其中,半参数加速失效时间(AFT)模型特别有吸引力,因为它可以直接解释协变量对间隔时间的影响。一般来说,由于基于秩的估计函数是一个不光滑的阶跃函数,因此半参数 AFT 模型的估计具有挑战性。结果,估计方程的解不一定存在。此外,AFT 模型常用的基于重抽样的方差估计需要反复求解基于秩的估计方程,因此计算繁琐且不稳定。在本文中,我们将诱导平滑方法扩展到用于复发间隔时间数据的 AFT 模型。我们提出的平滑估计函数允许应用标准数值方法进行回归系数估计和标准误差估计。为提出的方法提供了大样本性质和渐近方差估计量。模拟研究表明,与现有的非光滑基于秩的估计函数方法相比,该方法在点估计和方差估计方面都具有更好的性能。该方法应用于丹麦心理中心登记处患者重复住院的数据分析。