Suppr超能文献

基于递归间隙时间数据的基于秩的回归的诱导平滑。

Induced smoothing for rank-based regression with recurrent gap time data.

机构信息

Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA.

Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.

出版信息

Stat Med. 2018 Mar 30;37(7):1086-1100. doi: 10.1002/sim.7564. Epub 2017 Dec 4.

Abstract

Various semiparametric regression models have recently been proposed for the analysis of gap times between consecutive recurrent events. Among them, the semiparametric accelerated failure time (AFT) model is especially appealing owing to its direct interpretation of covariate effects on the gap times. In general, estimation of the semiparametric AFT model is challenging because the rank-based estimating function is a nonsmooth step function. As a result, solutions to the estimating equations do not necessarily exist. Moreover, the popular resampling-based variance estimation for the AFT model requires solving rank-based estimating equations repeatedly and hence can be computationally cumbersome and unstable. In this paper, we extend the induced smoothing approach to the AFT model for recurrent gap time data. Our proposed smooth estimating function permits the application of standard numerical methods for both the regression coefficients estimation and the standard error estimation. Large-sample properties and an asymptotic variance estimator are provided for the proposed method. Simulation studies show that the proposed method outperforms the existing nonsmooth rank-based estimating function methods in both point estimation and variance estimation. The proposed method is applied to the data analysis of repeated hospitalizations for patients in the Danish Psychiatric Center Register.

摘要

最近提出了各种半参数回归模型来分析连续复发事件之间的间隔时间。其中,半参数加速失效时间(AFT)模型特别有吸引力,因为它可以直接解释协变量对间隔时间的影响。一般来说,由于基于秩的估计函数是一个不光滑的阶跃函数,因此半参数 AFT 模型的估计具有挑战性。结果,估计方程的解不一定存在。此外,AFT 模型常用的基于重抽样的方差估计需要反复求解基于秩的估计方程,因此计算繁琐且不稳定。在本文中,我们将诱导平滑方法扩展到用于复发间隔时间数据的 AFT 模型。我们提出的平滑估计函数允许应用标准数值方法进行回归系数估计和标准误差估计。为提出的方法提供了大样本性质和渐近方差估计量。模拟研究表明,与现有的非光滑基于秩的估计函数方法相比,该方法在点估计和方差估计方面都具有更好的性能。该方法应用于丹麦心理中心登记处患者重复住院的数据分析。

相似文献

5
Quantile regression for recurrent gap time data.复发间隔时间数据的分位数回归
Biometrics. 2013 Jun;69(2):375-85. doi: 10.1111/biom.12010. Epub 2013 Mar 11.
7
Efficient resampling methods for nonsmooth estimating functions.用于非光滑估计函数的高效重采样方法。
Biostatistics. 2008 Apr;9(2):355-63. doi: 10.1093/biostatistics/kxm034. Epub 2007 Oct 8.
8
Smoothed quantile regression analysis of competing risks.竞争风险的平滑分位数回归分析
Biom J. 2018 Sep;60(5):934-946. doi: 10.1002/bimj.201700104. Epub 2018 Jul 5.

本文引用的文献

2
Nonparametric Estimation of a Recurrent Survival Function.复发生存函数的非参数估计
J Am Stat Assoc. 1999 Mar 1;94(445):146-153. doi: 10.1080/01621459.1999.10473831.
3
Kernel Estimation of Rate Function for Recurrent Event Data.复发事件数据率函数的核估计
Scand Stat Theory Appl. 2005 Mar;32(1):77-91. doi: 10.1111/j.1467-9469.2005.00416.x.
4
Quantile regression for recurrent gap time data.复发间隔时间数据的分位数回归
Biometrics. 2013 Jun;69(2):375-85. doi: 10.1111/biom.12010. Epub 2013 Mar 11.
6
Smoothing spline ANOVA frailty model for recurrent event data.用于复发事件数据的平滑样条方差分析脆弱模型。
Biometrics. 2011 Dec;67(4):1330-9. doi: 10.1111/j.1541-0420.2011.01584.x. Epub 2011 Apr 2.
8
Nonparametric modeling of the gap time in recurrent event data.复发事件数据中间隔时间的非参数建模。
Lifetime Data Anal. 2009 Jun;15(2):256-77. doi: 10.1007/s10985-008-9110-4. Epub 2009 Jan 3.
9
Efficient resampling methods for nonsmooth estimating functions.用于非光滑估计函数的高效重采样方法。
Biostatistics. 2008 Apr;9(2):355-63. doi: 10.1093/biostatistics/kxm034. Epub 2007 Oct 8.
10
A semiparametric additive rates model for recurrent event data.用于复发事件数据的半参数加法率模型。
Lifetime Data Anal. 2006 Dec;12(4):389-406. doi: 10.1007/s10985-006-9017-x. Epub 2006 Sep 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验