Li Qiang, Dhakal Rabin, Kim Jaeyoun
Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA.
Sci Rep. 2017 Dec 5;7(1):17009. doi: 10.1038/s41598-017-17230-3.
High aspect-ratio elastomeric micropillars play important roles as the platform for microscale sensing and actuation. Many soft-lithographic techniques have been developed for their facile realization but most of the techniques are limited to build the micropillars only on totally flat, widely accessible substrate areas with the micropillar's structural characteristics completely predetermined, leaving little room for in situ control. Here we demonstrate a new technique which overcomes these limitations by directly drawing micropillars from pipette-dispensed PDMS microdroplets using vacuum-chucked microspheres. The combined utilization of PDMS microdroplets and microspheres not only enables the realization of microsphere-tipped PDMS micropillars on non-flat, highly space-constrained substrate areas at in situ controllable heights but also allows arraying of micropillars with dissimilar heights at a close proximity. To validate the new technique's utility and versatility, we realize PDMS micropillars on various unconventional substrate areas in various configurations. We also convert one of them, the optical fiber/micropillar hybrid, into a soft optical contact sensor. Both the fabrication technique and the resulting sensing scheme will be useful for future biomedical microsystems.
高纵横比的弹性体微柱作为微尺度传感和驱动的平台发挥着重要作用。已经开发了许多软光刻技术来轻松实现它们,但大多数技术仅限于在完全平坦、易于使用的基板区域上构建微柱,微柱的结构特征完全预先确定,几乎没有原位控制的空间。在这里,我们展示了一种新技术,该技术通过使用真空夹持微球从移液器分配的PDMS微滴中直接绘制微柱来克服这些限制。PDMS微滴和微球的联合使用不仅能够在非平坦、高度空间受限的基板区域上以原位可控高度实现微球尖端的PDMS微柱,还能够在近距离排列不同高度的微柱。为了验证新技术的实用性和多功能性,我们在各种非常规基板区域以各种配置实现了PDMS微柱。我们还将其中一种,即光纤/微柱混合体,转化为一种软光学接触传感器。制造技术和由此产生的传感方案都将对未来的生物医学微系统有用。