Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy.
Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, Technical University of Munich, 85748 Garching, Germany.
ACS Appl Mater Interfaces. 2023 Feb 8;15(5):7602-7609. doi: 10.1021/acsami.2c21921. Epub 2023 Jan 27.
Nowadays, many applications in diverse fields are taking advantage of micropillars such as optics, tribology, biology, and biomedical engineering. Among them, one of the most attractive is three-dimensional microelectrode arrays for in vivo and in vitro studies, such as cellular recording, biosensors, and drug delivery. Depending on the application, the micropillar's optimal mechanical response ranges from soft to stiff. For long-term implantable devices, a mechanical mismatch between the micropillars and the biological tissue must be avoided. For drug delivery patches, micropillars must penetrate the skin without breaking or bending. The accurate mechanical characterization of the micropillar is pivotal in the fabrication and optimization of such devices, as it determines whether the device will fail or not. In this work, we demonstrate an experimental method based only on atomic force microscopy-force spectroscopy that allows us to measure the stiffness of a micropillar and the elastic modulus of its constituent material. We test our method with four different types of 3D inkjet-printed micropillars: silver micropillars sintered at 100 and 150 °C and polyacrylate microstructures with and without a metallic coating. The estimated elastic moduli are found to be comparable with the corresponding bulk values. Furthermore, our findings show that neither the sintering temperature nor the presence of a thin metal coating plays a major role in defining the mechanical properties of the micropillar.
如今,许多不同领域的应用都在利用微柱体,如光学、摩擦学、生物学和生物医学工程。其中,最吸引人的之一是用于体内和体外研究的三维微电极阵列,如细胞记录、生物传感器和药物输送。根据应用的不同,微柱体的最佳机械响应范围从软到硬。对于长期植入式设备,必须避免微柱体与生物组织之间的机械不匹配。对于药物输送贴片,微柱体必须穿透皮肤而不会断裂或弯曲。微柱体的精确机械特性在这些设备的制造和优化中至关重要,因为它决定了设备是否会失效。在这项工作中,我们展示了一种仅基于原子力显微镜-力谱学的实验方法,该方法允许我们测量微柱体的刚度和其组成材料的弹性模量。我们使用四种不同类型的 3D 喷墨打印微柱体测试了我们的方法:在 100 和 150°C 下烧结的银微柱体以及具有和不具有金属涂层的聚丙烯酸酯微结构。估计的弹性模量与相应的体值相当。此外,我们的研究结果表明,烧结温度和薄金属涂层的存在都不会在很大程度上影响微柱体的机械性能。