Suppr超能文献

化学生物基因组学主动学习在小而稀疏的 qHTS 矩阵上的适用领域:使用细胞色素 P450 和核激素受体家族进行的研究。

Chemogenomic Active Learning's Domain of Applicability on Small, Sparse qHTS Matrices: A Study Using Cytochrome P450 and Nuclear Hormone Receptor Families.

机构信息

Institute of Transformative bio-Molecules, WPI-ITbM, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.

Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Sakyo, Yoshida-konoemachi Building D, 3F, Kyoto, 606-8501, Japan.

出版信息

ChemMedChem. 2018 Mar 20;13(6):511-521. doi: 10.1002/cmdc.201700677. Epub 2018 Feb 5.

Abstract

Computational models for predicting the activity of small molecules against targets are now routinely developed and used in academia and industry, partially due to public bioactivity databases. While models based on bigger datasets are the trend, recent studies such as chemogenomic active learning have shown that only a fraction of data is needed for effective models in many cases. In this article, the chemogenomic active learning method is discussed and used to newly analyze public databases containing nuclear hormone receptor and cytochrome P450 enzyme family bioactivity. In addition to existing results on kinases and G-protein coupled receptors, results here demonstrate the active learning methodology's effectiveness on extracting informative ligand-target pairs in sparse data scenarios. Experiments to assess the domain of the applicability demonstrate the influence of ligand profiles of similar targets within the family.

摘要

用于预测小分子对靶标活性的计算模型现在在学术界和工业界得到了常规的开发和使用,部分原因是公共生物活性数据库的存在。尽管基于更大数据集的模型是趋势,但最近的研究,如化学生物基因组主动学习,已经表明在许多情况下,仅需要数据的一小部分就可以得到有效的模型。在本文中,讨论了化学生物基因组主动学习方法,并将其用于新的分析包含核激素受体和细胞色素 P450 酶家族生物活性的公共数据库。除了在激酶和 G 蛋白偶联受体方面的现有结果外,这里的结果还证明了主动学习方法在稀疏数据情况下提取信息性配体-靶标对的有效性。评估适用性域的实验证明了家族内相似靶标配体特征的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验