Suppr超能文献

主动学习在化学探针识别中的适用性领域:从非特异性化合物中学习的收敛性和决策规则的阐明。

Applicability Domain of Active Learning in Chemical Probe Identification: Convergence in Learning from Non-Specific Compounds and Decision Rule Clarification.

机构信息

Kyoto University Graduate School of Medicine, Department of Molecular Biosciences, Life Science Informatics Research Unit, Kyoto, Sakyo, Yoshida, Konoemachi, Kyoto 606-8501, Japan.

Kyoto University Graduate School of Medicine, Department of Radiation Genetics; Kyoto, Sakyo, Yoshida, Konoemachi, Kyoto 606-8501, Japan.

出版信息

Molecules. 2019 Jul 26;24(15):2716. doi: 10.3390/molecules24152716.

Abstract

Efficient identification of chemical probes for the manipulation and understanding of biological systems demands specificity for target proteins. Computational means to optimize candidate compound selection for experimental selectivity evaluation are being sought. The active learning virtual screening method has demonstrated the ability to efficiently converge on predictive models with reduced datasets, though its applicability domain to probe identification has yet to be determined. In this article, we challenge active learning's ability to predict inhibitory bioactivity profiles of selective compounds when learning from chemogenomic features found in non-selective ligand-target pairs. Comparison of controls versus multiple molecule representations de-convolutes factors contributing to predictive capability. Experiments using the matrix metalloproteinase family demonstrate maximum probe bioactivity prediction achieved from only approximately 20% of non-probe bioactivity; this data volume is consistent with prior chemogenomic active learning studies despite the increased difficulty from chemical biology experimental settings used here. Feature weight analyses are combined with a custom visualization to unambiguously detail how active learning arrives at classification decisions, yielding clarified expectations for chemogenomic modeling. The results influence tactical decisions for computational probe design and discovery.

摘要

高效识别用于操纵和理解生物系统的化学探针需要针对目标蛋白质的特异性。正在寻找用于优化候选化合物选择以进行实验选择性评估的计算方法。主动学习虚拟筛选方法已证明能够有效地利用减少的数据集来收敛于预测模型,尽管其在探针识别中的适用范围尚未确定。在本文中,我们挑战主动学习从非选择性配体-靶对中发现的化学生物组学特征中学习时预测选择性化合物抑制生物活性谱的能力。对照与多种分子表示形式的比较可推断出对预测能力有贡献的因素。使用基质金属蛋白酶家族的实验证明,仅从大约 20%的非探针生物活性中即可实现最大探针生物活性预测;尽管使用了这里采用的化学生物学实验设置,增加了难度,但该数据量与先前的化学生物组学主动学习研究一致。特征权重分析与自定义可视化相结合,可以明确详细地说明主动学习如何做出分类决策,从而为化学生物组学建模提供更明确的预期。结果影响计算探针设计和发现的战术决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2175/6696588/503996af43fc/molecules-24-02716-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验