Carlin Daniel E, Paull Evan O, Graim Kiley, Wong Christopher K, Bivol Adrian, Ryabinin Peter, Ellrott Kyle, Sokolov Artem, Stuart Joshua M
University of California San Diego, Department of Medicine, La Jolla, CA, United States of America.
University of California Santa Cruz, Department of Biomolecular Engineering, Santa Cruz, CA, United States of America.
PLoS One. 2017 Dec 6;12(12):e0170340. doi: 10.1371/journal.pone.0170340. eCollection 2017.
We introduce a novel method called Prophetic Granger Causality (PGC) for inferring gene regulatory networks (GRNs) from protein-level time series data. The method uses an L1-penalized regression adaptation of Granger Causality to model protein levels as a function of time, stimuli, and other perturbations. When combined with a data-independent network prior, the framework outperformed all other methods submitted to the HPN-DREAM 8 breast cancer network inference challenge. Our investigations reveal that PGC provides complementary information to other approaches, raising the performance of ensemble learners, while on its own achieves moderate performance. Thus, PGC serves as a valuable new tool in the bioinformatics toolkit for analyzing temporal datasets. We investigate the general and cell-specific interactions predicted by our method and find several novel interactions, demonstrating the utility of the approach in charting new tumor wiring.
我们介绍了一种名为“预言性格兰杰因果关系”(PGC)的新方法,用于从蛋白质水平的时间序列数据推断基因调控网络(GRN)。该方法使用格兰杰因果关系的L1惩罚回归自适应模型,将蛋白质水平建模为时间、刺激和其他扰动的函数。当与数据独立的网络先验相结合时,该框架在提交给HPN-DREAM 8乳腺癌网络推理挑战的所有其他方法中表现出色。我们的研究表明,PGC为其他方法提供了补充信息,提高了集成学习器的性能,同时其自身也取得了中等性能。因此,PGC是生物信息学工具包中用于分析时间数据集的一种有价值的新工具。我们研究了我们的方法预测的一般和细胞特异性相互作用,发现了几种新的相互作用,证明了该方法在绘制新的肿瘤连接图方面的实用性。